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Liquidity Decomposition Predictability

Counterfactuals: Motivating questions

I We can use the asset demand system to compute
counterfactuals.

I Examples of questions that can be explored:

1. Have financial markets become more liquid over the last 30
years with the growing importance of institutional investors?

2. How much of the volatility and predictability of asset prices is
explained by institutional demand?

3. Do large investment managers amplify volatility? Should they
be regulated as SIFI?
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Computing counterfactuals
I Recall the market clearing equation

ME (n) = S(n)P(n) =
I∑

i=1

Aiwi (n,me, x, ε).

I Taking logarithms implies

p = f(p) = log

(
I∑

i=1

Aiwi (p)

)

− s.
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Aiwi (n,me, x, ε).

I Taking logarithms implies

p = f(p) = log

(
I∑

i=1

Aiwi (p)

)

− s.

I Market clearing defines an implicit function for log price:

pt = g(st , xt ,At , βt , εt).

⇒ Asset prices are fully determined by shares outstanding,
characteristics, the wealth distribution, the coefficients on
characteristics, and latent demand.
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Computing counterfactuals

I To solve for prices, we need to solve a high-dimensional
non-linear system.

I In practice, this can be done quite easily starting from the
market clearing condition in logarithms:

p = f(p) = log
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I Given a price vector pm, Newton’s method would update the
price vector through

pm+1 = pm +

(

I −
∂f(pm)

∂p′

)−1

(f(pm) − pm).

I For our application, this approach would be computationally
slow because the Jacobian has a large dimension.
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Computing counterfactuals

I Therefore, we approximate the Jacobian with only its diagonal
elements

∂f(pm)

∂p′ ≈diag

(

min

{
∂f (pm)

∂p(n)
, 0

})

=diag

(

min

{∑I
i=1 β0,iAiwi (pm; n)(1 − wi (pm; n))

∑I
i=1 Aiwi (pm; n)

, 0

})

,

where the minimum ensures that the elements are bounded
away from one.

I We have found that this algorithm is fast and reliable,
converging in fewer than 100 steps in applications.
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Liquidity measurement

I We define the co-liquidity matrix for investor i as

∂pt

∂ log(εi ,t)′
=



I −
I∑

j=1

Aj ,tβ0,j ,tH
−1
t Gj ,t





−1

Ai ,tH
−1
t Gi ,t .

I We compute two measures of price impact
I Price impact for each stock and institution via the diagonal

elements of ∂pt

∂ log(εi,t)′
and average by institutional type.

I Aggregate price impact, defined as
∑I

i=1
∂pt

∂ log(εi,t )′
, captures

the price impact of systematic shocks to latent demand across
all investors.
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Price impact across stocks and institutions
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Liquidity Decomposition Predictability

Aggregate price impact across stocks
I Aggregate price impact:

∑I
i=1 ∂p(n)/∂ log(εi (n)).
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Variance decomposition of stock returns

I We start with the definition of log returns:

rt+1 = pt+1 − pt + vt+1,

where vt+1 = log(1 + exp{dt+1 − pt+1}).

9 / 19



Liquidity Decomposition Predictability

Variance decomposition of stock returns

I We start with the definition of log returns:

rt+1 = pt+1 − pt + vt+1,

where vt+1 = log(1 + exp{dt+1 − pt+1}).

I The model implies that

pt = g(st , xt ,At , βt , εt)

1. st : Shares outstanding.
2. xt : Asset characteristics.
3. At : Assets under management.
4. βt : Coefficients on characteristics.
5. εt : Latent demand.

9 / 19



Liquidity Decomposition Predictability

Variance decomposition of stock returns

I We decompose the capital gain, pt+1 − pt , as

Δpt+1(s) + Δpt+1(x) + Δpt+1(A) + Δpt+1(β) + Δpt+1(ε),

where:

Δpt+1(s) =g(st+1, xt ,At , βt , εt) − g(st , xt ,At , βt , εt),

Δpt+1(x) =g(st+1, xt+1,At , βt , εt) − g(st+1, xt ,At , βt , εt),

. . .
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Variance decomposition of stock returns

I We decompose the capital gain, pt+1 − pt , as

Δpt+1(s) + Δpt+1(x) + Δpt+1(A) + Δpt+1(β) + Δpt+1(ε),

where:

Δpt+1(s) =g(st+1, xt ,At , βt , εt) − g(st , xt ,At , βt , εt),

Δpt+1(x) =g(st+1, xt+1,At , βt , εt) − g(st+1, xt ,At , βt , εt),

. . .

I We compute each of these counterfactual price vectors and
decompose the cross-sectional variance of log returns as

1 =
Cov(Δpt+1(s), rt+1)

Var(rt+1)
+

Cov(Δpt+1(x), rt+1)

Var(rt+1)
+ . . . .
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Variance decomposition of stock returns

% of
variance

Supply:
Shares outstanding 2.1

(0.2)
Stock characteristics 9.7

(0.3)
Dividend yield 0.4

(0.0)
Demand:

Assets under management 2.3
(0.1)

Coefficients on characteristics 4.7
(0.2)

Latent demand: Extensive margin 23.3
(0.3)

Latent demand: Intensive margin 57.5
(0.4)

Observations 134,328
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Variance decomposition of stock returns in 2008

I The asset demand system can also be used to understand how
much an investor contributes to the the fluctuations in a given
stock.

I This provides a new perspective on the “dark matter” in
financial markets.
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Variance decomposition of stock returns in 2008

I The asset demand system can also be used to understand how
much an investor contributes to the the fluctuations in a given
stock.

I This provides a new perspective on the “dark matter” in
financial markets.

I We provide an illustration during the financial crisis.

I We modify the variance decomposition as

Var(rt+1) =Cov(Δpt+1(s) + Δpt+1(x) + vt+1, rt+1)

+
I∑

i=1

Cov(Δpt+1(Ai ) + Δpt+1(βi ) + Δpt+1(εi ), rt+1).
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Variance decomposition of stock returns in 2008

I Are large investment managers systemic?

AUM AUM Change in % of
ranking Institution ($ billion) AUM (%) variance

Supply: Shares outstanding, stock
characteristics & dividend yield 8.1 (1.0)

1 Barclays Bank 699 -41 0.3 (0.1)
2 Fidelity Management & Research 577 -63 0.9 (0.2)
3 State Street Corporation 547 -37 0.3 (0.0)
4 Vanguard Group 486 -41 0.4 (0.0)
5 AXA Financial 309 -70 0.3 (0.1)
6 Capital World Investors 309 -44 0.1 (0.1)
7 Wellington Management Company 272 -51 0.4 (0.1)
8 Capital Research Global Investors 270 -53 0.1 (0.1)
9 T. Rowe Price Associates 233 -44 -0.2 (0.1)
10 Goldman Sachs & Company 182 -59 0.1 (0.1)

Subtotal: 30 largest institutions 6,050 -48 4.4

Smaller institutions 6,127 -53 40.7 (2.3)
Households 6,322 -47 46.9 (2.6)
Total 18,499 -49 100.0
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Predictability of stock returns

I Recall that

pT = g(sT , xT ,AT , βT , εT )

I Model εT as mean reverting and everything else as random
walk.
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Predictability of stock returns

I Recall that

pT = g(sT , xT ,AT , βT , εT )

I Model εT as mean reverting and everything else as random
walk.

I First-order approximation of expected long-run capital gain:

Et [pT − pt ] ≈g(Et [sT ],Et [xT ],Et [AT ],Et [βT ],Et [εT ]) − pt

=g(st , xt ,At , βt , 1) − pt

I Intuition: Assets with high latent demand are expensive and
have low expected returns.
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Relation between stock returns and characteristics

All Excluding
Characteristic stocks microcaps

Expected return 0.18 0.11
(0.04) (0.04)

Log market equity -0.25 -0.15
(0.08) (0.08)

Book-to-market equity 0.04 0.06
(0.04) (0.05)

Profitability 0.30 0.29
(0.06) (0.06)

Investment -0.38 -0.21
(0.03) (0.03)

Market beta 0.08 0.01
(0.08) (0.10)

Momentum 0.24 0.37
(0.08) (0.10)
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Predicting returns by predicting demand

I Modern approaches to return predictability take characteristics
of stocks and use it to predict returns directly.

I DSAP provides another approach by first predicting demand
and then predict returns via market clearing.

I The conditions under which both approaches are equivalent
are quite strong and require a lot of homogeneity across
investors.

I Predicting returns by predicting demand can yield new
insights by taking a more granular approach. We just provide
a simple first example as a “proof of concept.”
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Additional applications

I In Koijen, Richmond, and Yogo (2023), we provide additional
examples of counterfactuals:

I How important are different investors for pricing characteristics
(e.g., governance or environmental characteristics).

I How did the transition from active to passive investment affect
prices, investors’ wealth, and price informativeness?

I Climate stress tests: If there is a shift in demand for green
characteristics (e.g., because of growing awareness or because
of new regulation for insurers and pension funds), how would
this affect prices and investors’ wealth.
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Lucas critique

I Of course, characteristics-based demand can be used for
policy experiments only under the null that it is a structural
model of asset demand that is policy invariant.

I The Lucas critique applies under the alternative that the
coefficients on characteristics and latent demand ultimately
capture beliefs or constraints that change with policy.
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Lucas critique

I Of course, characteristics-based demand can be used for
policy experiments only under the null that it is a structural
model of asset demand that is policy invariant.

I The Lucas critique applies under the alternative that the
coefficients on characteristics and latent demand ultimately
capture beliefs or constraints that change with policy.

I Also, we cannot answer welfare questions without taking an
explicit stance on preferences, beliefs, and constraints.

I However, for most asset pricing applications, price (rather
than welfare) is the primary object of interest.

I That said, it highlights the importance of developing new
micro foundations that can deliver inelastic demand and other
key features of the asset demand system.
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Conclusions

I We show how to calculate counterfactuals once we have
estimated the asset demand system.

I The demand system can be use to connect fluctuations in
prices to changes in characteristics and investors’ demand.

I This provides a new perspective to start analyzing the “dark
matter” in financial markets.

I Moreover, by predicting demand, we provide a new approach
to return predictability, where machine learning/AI methods
are particularly well suited as holdings data are very
high-dimensional.
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