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1. Basic structure of the notes

• High-level summary of theoretical frameworks to interpret em-

pirical facts.

• Per asset class, we will discuss:

1. Key empirical facts in terms of prices (unconditional and

conditional risk premia) and asset ownership.

2. Interpret the facts using the theoretical frameworks.

3. Facts and theories linking financial markets and the real

economy.

4. Active areas of research and some potentially interesting

directions for future research.

• The notes cover the following asset classes:

1. Equities (weeks 1-5).

– Predictability and the term structure of risk (week 1)

– Cross-section and the factor zoo (week 2)

– Intermediary-based asset pricing (week 3)

– Production-based asset pricing (week 4)

– Asset pricing via demand systems (week 5)

2. Mutual Funds and Hedge Funds (week 6).

3. Options and volatility (week 7).

4. Government bonds (week 8).

5. Corporate bonds and CDS (week 9).

6. Currencies and international finance (week 10).

7. Commodities (week 11).

8. Real estate (week 12).
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2. Stock Return Predicability

2.1. The equity premium and stock market volatility

• The average returns on stocks is higher than the returns on

short-term nominal bonds.

• Data source: Ken French, using data from CRSP and Bloomberg.

• Annualized estimates of equity risk premium based on monthly

returns:

1990.7-2021.07 U.S. N-America Europe Asia Pac, ex-Japan Japan

Mean 9.1 9.0 6.5 8.3 1.5
Stand. dev. 15.0 15.0 17.1 20.1 19.3
Sharpe Ratio 0.60 0.60 0.38 0.41 0.08

• The equity premium and Sharpe ratio for the U.S. is robust

across samples. For a long sample from 1926.7-2021.7, the

equity risk premium in the U.S. is 8.3%. Return volatility is

18.5%. The Sharpe Ratio is 0.45.

• Equity risk premium is similarly large for Europe1 and Asia

Pacific, excluding Japan.

• Japan is a surprising “outlier” with no equity risk premium

whatsoever during a 30-year period. How plausible is it that

investors were negatively surprised 30 years in a row?

1Europe includes Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.
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• Equity returns are volatile, which makes it challenging to mea-

sure the equity premium precisely. The standard error over the

long sample, which contains 95 years of data is 18.5%/
√

95 =

2%. Hence a 95%-confidence interval ranges from 4% to 12%!

• Avdis and Wachter (2017) provide unconditional maximum like-

lihood estimators of the equity risk premium (μr) using systems

of the form

rt+1 = μr + β(xt − μx) + εr,t+1,

xt+1 = μx + φ(xt − μx) + εx,t+1,

Estimates of μr via this system of equations are more precise

when φ is high and when the innovations are correlated.

• Obviously, stock markets tend to decline in bad economic times:

cumulative excess market return -66% from Oct 2007-Feb 2009,

-22% from Jan -March 2020, and in 2022.
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2.2. Time-series predictability and excess volatility

• Campbell and Shiller (1988) develop a log-linear approxima-

tion of returns that results in a useful accounting identity to

understand the link between stock prices, fundamentals (that

is, dividends) and expected returns.

• This relationship starts from the definition of log stock returns:

rt+1 = log

(
Pt+1 + Dt+1

Pt

)

= Δdt+1 − pdt + log

(

1 +
Pt+1

Dt+1

)

where pdt = log(Pt/Dt) and Δdt+1 = log(Dt+1/Dt).

• Apply a first-order Taylor approximation to the last term

log

(

1 +
Pt+1

Dt+1

)

≈ κ0 + κ1pdt+1,

κ1 =
epd

1 + epd
, κ0 = log

(
1 + epd

)
− κ1pd

rt+1 ≈ κ0 + Δdt+1 + κ1pdt+1 − pdt

• Iterate forward on this equation to obtain:

pdt =
κ0

1 − κ1
+

∞∑

j=0

κj
1Δdt+1+j −

∞∑

j=0

κj
1rt+1+j.

• After imposing the transversality condition, which is a no-bubbles

condition

lim
j→∞

κj
1Et[pdt+j] = 0.
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– As an aside, Giglio, Maggiori, and Stroebel (2016) test the

no-bubble condition in housing markets by comparing very

long-term (700+ years!) leases and freeholds in the UK and

Singapore. They find no evidence of bubbles.
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• The present-value relationship holds ex-post as well as ex-

ante:

pdt =
κ0

1 − κ1
+ Et

[
∞∑

j=0

κj
1Δdt+1+j

]

︸ ︷︷ ︸
ΔdH

t

−Et

[
∞∑

j=0

κj
1rt+1+j

]

︸ ︷︷ ︸
rH
t

. (1)

• Hence, movements in prices can be attributed to fluctuations

in expected growth rates (ΔdH
t ), expected returns (rH

t ), or both.

• Expected discounted future dividend growth rates or returns

have to be volatile or they have to be negatively correlated if

prices are to be volatile:

V [pdt] = V [ΔdH
t ] + V [rH

t ] − 2Cov[ΔdH
t , rH

t ].

• Shiller (1981) provides the first evidence that prices appear to

move more than what is implied by expected dividends, even

realized dividends. This is the celebrated excess volatility puz-

zle. The classic figure from Shiller’s paper:
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• As prices are more volatile than realized dividends, equation

(1) implies that discount rates must move over time.

• Time-varying expected returns means that returns are pre-

dictable. The natural candidate predictor variable is the price-

dividend ratio.

• Rewrite (1) in terms of covariances:

V [pdt] = Cov[ΔdH
t , pdt] − Cov[rH

t , pdt]

1 =
Cov[ΔdH

t , pdt]

V [pdt]
−

Cov[rH
t , pdt]

V [pdt]

– First term is the slope of a regression predicting future

dividend growth rates with pdt

– Second term is the slope of a regression predicting future

returns with pdt

– There is an adding-up constraint on the two long-horizon

predictability slope coefficients

– The dog that did not bark (Lettau and Van Nieuwerburgh,

2008 and Cochrane, 2008)
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2.3. Empirical Evidence

• Typical empirical framework:

Δdt+1 = ad + κddpt + ed,t+1, (2)

rt+1 = ar + κrdpt + er,t+1, (3)

dpt+1 = adp + φdpt + epd,t+1, (4)

where the present-value identity implies a coefficient restric-

tion 1 − κ1φ = κr − κd

• Summary of the evidence (Koijen and Van Nieuwerburgh, 2011)

Panel A: Return Predictability

Div. Reinv. at Rf Div. Reinv. at Rm

κr t − stat R2 κr t − stat R2

1926-2009 0.077 1.31 2.90 0.104 2.08 4.82

1945-2009 0.130 2.56 10.84 0.126 2.58 10.02

Panel B: Dividend Growth Predictability

Div. Reinv. at Rf Div. Reinv. at Rm

κd t − stat R2 κd t − stat R2

1926-2009 -0.078 -1.48 7.64 0.008 0.20 0.05

1945-2009 0.017 0.68 1.13 0.044 1.10 2.03

Source: Koijen and Van Nieuwerburgh (2011), Table 1

• Findings:

– Evidence of return predictability in the post-war sample

period, but weaker before the second world war.

– The reinvestment strategy of dividends during the year

matters (Binsbergen and Koijen, 2010).

– Dividend growth is predictable by the price-dividend ratio

before the second world war, not thereafter. Potential ex-

planation: changes in dividend smoothing (Chen, 2009).
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See also historical evidence from Amsterdam and London

stock exchanges (Golez and Koudijs, 2018).

– Return predictability tends to be stronger at longer hori-

zons, see Cochrane (2011):

• Stock return predictability literature can be divided into:

1. Better statistical methods to infer expected returns or ex-

pected dividend growth rates given the persistence of the

pd ratio, see for instance

– Structural breaks (Lettau and Van Nieuwerburgh, 2008).

– Filtering methods (Binsbergen and Koijen, 2010).

– Near-unit root inference (Campbell and Yogo, 2006)

2. Use additional variables besides pdt to predict returns, see

for instance

– CAY (Lettau and Ludvigson, 2001).

– The cross-section of valuation ratios (Kelly and Pruitt,

2013).
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– The variance risk premium (Bollerslev and Zhou, 2009).

More on this later.

– Many more predictors have been proposed, the predic-

tive qualities of many of which were called into ques-

tion by Goyal and Welch (2008) and (2021).

• Lettau and Van Nieuwerburgh (2008): Break-adjusting dp strength-

ens evidence for return predictability considerably, but also the

evidence for dividend growth predictability

Panel A: Return Predictability

Div. Reinv. at Rf Div. Reinv. at Rm

κr t − stat R2 κr t − stat R2

1926-2009 0.212 2.32 6.20 0.393 4.29 14.91

1945-2009 0.322 4.47 17.25 0.357 4.17 17.72

Panel B: Dividend Growth Predictability

Div. Reinv. at Rf Div. Reinv. at Rm

κd t − stat R2 κd t − stat R2

1926-2009 -0.240 -2.53 20.52 0.107 1.37 2.15

1945-2009 -0.021 -0.33 0.42 0.133 1.86 4.08

Source: Koijen and Van Nieuwerburgh (2011), Table 2

• Clarifies that a permanent or at least highly persistent com-

ponent in the pd ratio obscures return and dividend growth

predictability.

• This is useful input for theoretical asset pricing models which

must possess both return and dividend growth predictability.
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2.4. Extracting expected returns and dividend growth rates

2.4.1. Gaussian Setting

• Follows Binsbergen and Koijen (2010).

• Rather than pre-specifying that a variable xt predicts returns

or dividend growth, we can model expected returns (μt) and

expected growth (gt) rates as latent variables.

• The assumptions are about the time-series dynamics, which

we assume to be an AR(1) for both

μt+1 = δ0 + δ1(μt − δ0) + εμ
t+1,

gt+1 = γ0 + γ1(gt − γ0) + εg
t+1,

combined with the model for realized dividend growth

Δdt+1 = gt + εd
t+1.

• We assume that the shocks are normally distributed

εt ≡ (εd
t , ε

g
t , ε

μ
t )

′ ∼ N(0, Σ).

• The log price-dividend ratio as implied by the Campbell and

Shiller identity.

pdt =
κ0

1 − κ1
+

∞∑

s=1

κs−1
1 Et [Δdt+s] −

∞∑

s=0

κs−1
1 Et [rt+s]

= A − B1(μt − δ0) + B2(gt − γ0),

where A = κ0(1− κ1)
−1 + (γ0 − δ0)(1− κ1)

−1, B1 = (1− δ1κ1)
−1, and

B2 = (1 − γ1κ1)
−1.
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• Note 1: If expected returns and expected growth are an AR(1),

then the price-dividend ratio is an AR(1) if only if expected re-

turns and expected growth rates are equally persistent, that

is, δ1 = γ1.

• Note 2: The equation for the price-dividend ratio has no error

in it. This means that instead of having two latent variables,

we only have one.

• Denoting the demeaned expected growth rate of dividends by

ĝt = gt − γ0, we arrive at the final system

Δdt+1 = γ0 + ĝt + εd
t+1,

pdt+1 = (1 − δ1)A + B2(γ1 − δ1)ĝt + δ1pdt − B1ε
μ
t+1 + B2ε

g
t+1,

ĝt+1 = γ1ĝt + εg
t+1.

The first two equations are measurement equations. The third

equation is the transition equation of the latent variable.

• One can estimate this model via maximum likelihood, using

the Kalman filter to construct the likelihood. The appendix

contains the derivations.

• The Kalman filter effectively introduces moving average terms

of returns and dividend growth rates to predict future returns

and future dividend growth rates.
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• Estimation results:

benchmark benchmark break-adjusted break-adjusted

1926-2009 1945-2009 1926-2009 1945-2009

AC exp ret 0.93 0.92 0.66 0.64

AC exp div gr 0.26 0.38 0.29 0.35

Std[exp ret] 4.2% 4.6% 7.8% 8.5%

Std[exp div gr] 12.2% 6.9% 12.3% 6.8%

R2 returns 3.0% 9.1% 6.7% 14.1%

R2 div gr 46.8% 18.9% 46.5% 19.9%

%DR 93% 103% 79% 107%

%CF 13% 7% 50% 22%

−2Cov(CF, DR) -6% -10% -29% -30%

Source: Koijen and Van Nieuwerburgh (2011), Table 3

• Notice the much higher persistence in expected returns than

in expected dividend growth rates

• Also notice that dividend growth rates are strongly predictable

(but not by the pd ratio as we saw earlier)

• Most of the variation in the pd ratio comes from discount

rates (see also Cochrane, 2011)
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2.4.2. Beyond the Kalman Filter

• We need a linear-Normal model to apply the Kalman filter.

• In non-linear or non-Gaussian models, the updating steps are

not always known analytically.

• However, there has been a lot of work on non-linear filters

– Fast and simple non-linear filters:

∗ Extended Kalman filter: The conditional mean can be

a non-linear function, but the innovations are additive

and normally distributed, e.g.,

Xt = h(Xt−1) + εt.

∗ Unscented Kalman filter: The model can be fully non-

linear and numerical integration is done using Gaus-

sian quadrature. For a “finance-oriented” introduc-

tion, see Zoeter, Ypma, and Heskes (2004).

– General approach, but numerically much more challeng-

ing is through particle filtering, see for introductions the

lecture notes by Jesus Fernandez-Villaverde and for a more

formal treatment, see Doucet, de Freitas, and Gordon (2001).

For an application to estimating dynamic stochastic gen-

eral equilibrium models, see Fernandez-Villaverde and Rubio-

Ramirez (2007).
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2.5. Frequencies in expected returns

• The expected returns extracted as above are highly persistent;

they move at generational frequencies

• Alternative methods and additional data tend to uncover a business-

cycle frequency in expected returns. From Cochrane (2011):

• Hence, the persistence in the price-dividend ratio suggests a

highly persistent component. CAY from Lettau and Ludvigson

or the cross-section of valuation ratios from Kelly and Pruitt

point to a higher-frequency component.

• Evidence from the variance risk premium points to predictabil-

ity that disappears after weeks or months, rather than years

or decades. This is a third frequency component in expected

returns.
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2.6. Econometric issues in return predictability

• A large econometric literature is concerned with correct infer-

ence as many variables, including the price-dividend ratio, are

highly persistent:

– Bias and correct test statistics if predictors are persistent

(Mankiw and Shapiro (1986), Stambaugh (1999), Lewellen

(2004), and Campbell and Yogo (2006)).

– Correct inference in case of long-horizon regressions (Boudoukh,

Richardson, and Whitelaw, 2008).

– Poor out-of-sample performance (Goyal and Welch, 2008

and Ferreira and Santa-Clara, 2011).

• In response to Goyal and Welch (2008), it is common practice to

include a section on the out-of-sample predictability of a new

predictor variable or a new method.

• However, we are repeatedly studying the same out-of-sample

period, which turns out-of-sample into in-sample tests again.
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• Illustration of the Mankiw-Shapiro / Stambaugh bias (omitting

means)

rt+1 = βdpt + εt+1,

dpt+1 = φdpt + ut+1.

In this system, dpt is highly persistent (φ ' 1), β > 0, and

Cov(εt+1, ut+1) < 0 (why?).

• In small samples, φ̂ tends to be downward biased (standard

issue in OLS).

• This implies for the bias in the predictive coefficient, β

E
(
β̂ − β

)
=

Cov(εt+1, ut+1)

V ar(ut+1)
E
(
φ̂ − φ

)
.

• Hence, β̂ is upward biased, which means that we reject the

null of no predictability too often.

• The upward bias is larger when (i) the predictor is more per-

sistent and (ii) the innovations of the predictor and returns are

more negatively correlated.

• This problem arises in other areas of (financial) economics as

well and is just a basic property of VAR models.
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• Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2022) apply

the insights of the equity return predictability to the portfolio

of outstanding government debt.

– Campbell-Shiller decomposition of debt/output ratio into:

∗ expected future cash flows on the government bond

portfolio, primary surpluses, over the next T years,

∗ expected future real, growth-adjusted returns on the

government bond portfolio over the next T years

∗ the debt/otput ratio T years from now

– The debt/output ratio plays the role of the price-dividend

ratio; it is highly persistent.

– Its innovations are negatively correlated with the innova-

tions in fiscal cash flows (surplus) and positively with the

innovations in government bond return

– So there is a severe Stambaugh bias in both cash-flow and

return predictability regressions.

– After correcting for the bias, there is evidence for neither

cash flow nor return predictability: the dogs that did not

bark.

– Instead, the debt/output ratio at t forecasts the debt/output

ratio at t + T .

– This is evidence of fiscal unsustainability.

– This lack of predictability is to a large extent due to the

presence of a permanent component in the debt/output

ratio; removing it restores some role for cash flow growth

predictability.
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2.7. Expectations and information sets

• We often write Et(∙) in the equations so far.

• But whose expectations do we measure?

• Standard assumption in empirical asset pricing: Investors know

more than the econometrician and we can apply the law of it-

erated expectations.

Et(Mt+1R
e
t+1) = 0 ⇒ E(Mt+1R

e
t+1) = 0.

In many cases, conditioning down solves the problem of testing

models as long as we assume that we condition on a smaller

information set than the information set of investors.

• Alternatively, we use survey expectations to predict future re-

turns.

• Survey expectations exist for households, CFOs, analysts, . . .

• Data sources:

– Gallup: Individual investors.

– Graham-Harvey: CFOs.

– American Association of Individual Investors.

– Investor Intelligence: Summary of newsletters.

– Shiller: Individual investors.

– Michigan Survey Research Center: Consumers.

– New York Fed Survey of Consumer Expectations
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• Greenwood and Shleifer (2014) suggest that there is quite some

co-movement between different surveys of returns expectations.

The average correlation is 43%.

• Striking fact: Survey expectations of returns are low in bad

times.

• This is inconsistent with most (rational) theories of asset pric-

ing.
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• Overview of the evidence in Greenwood and Shleifer (2014):

• Potential explanations

1. Investors confound fundamentals and prices (= do not un-

derstand that discount rates fluctuate a lot).

2. Investors extrapolate returns.

• Importantly, incorrect expectations of a group of investors can

be a source of excess volatility.
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• In recent work, Wang (2021) argues that there are actually two

clusters of agents:

– the ones identified by Greenwood and Shleifer: CFOs and

retail investors

– a second group: buy-side and sell-side analysts

• Turns out that the second group has subjective expectations

of stock returns that are contrarian (high in recessions), and

hence negatively correlated with the beliefs of the first group

of agents (who are like momentum traders).

• He shows that both sets of beliefs can be reconciled with the

data on returns, dividend growth rates, and pd ratios using

separate Kalman Filter estimation for each group (rational learn-

ing).

• He estimates different values of correlation between the sub-

jective expected returns and expected growth rates: the

first group has a positive correlation while the second group

has a negative correlation.
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3. Term Structure of Risk and Returns

3.1. What is it and why do we care?

• Definition: The term structure of returns refers to returns on

assets with the same underlying cash flows, where the return

is measured over the same holding period, but for different ma-

turities.

• E.g., the 1-month return on a 3-year and a 5-year Treasury

bond.

• We will see evidence for Treasuries, corporate bonds, variance

swaps, and housing later in the course. We now discuss evi-

dence from equity markets.

• Why do we care?

– Expected returns and risk over different horizons are im-

portant for real and financial investment decisions.

– Short-maturity asset prices are informative about future

growth, even in the presence of the ZLB.

– Informative about the cross-section of expected returns.

– Powerful test of theoretical asset pricing models.
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• We focus on the term structure of equity returns, and will re-

visit this topic later when we discuss other asset classes.

• To fix ideas, it is useful to start from the dividend discount

model.

• The price of a stock or equity index St is given by the discounted

value of its dividends Dt:

St =
∞∑

n=1

Et (Mt:t+nDt+n) ,

Mt:t+n =
∏n

j=1 Mt+j is the product of one-period stochastic dis-

count factors

• Alternative notation:

St =
∞∑

n=1

Et (Dt+n)

(1 + μt,n)
n

μt,n is appropriate per-period discount rate for period t + n.
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• Decompose the stock index as:

St =
∞∑

n=1

Et (Mt:t+nDt+n)

=
T∑

n=1

Et (Mt:t+nDt+n)

︸ ︷︷ ︸
Short-term asset

+
∞∑

i=T+1

Et (Mt:t+nDt+n)

︸ ︷︷ ︸
Long-term asset

.

• We call Pt,n = Et (Mt:t+nDt+n) the price of the nth dividend strip,

see Brennan (1998). The equity index price is the sum of all

strip prices (value additivity):

St =
∞∑

n=1

Pt,n.
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• Properties of the aggregate stock market that have been chal-

lenging to explain:

1. Equity premium puzzle

2. Excess volatility puzzle

3. Return predictability

• We want to “strip” down the stock market index and study the

pricing of “short-term” and “long-term” dividend payments.

• Big picture question:

Are facts (1) - (3) a “long-term” or a “short-term” phenomenon?

• What do leading macro-finance models predict regarding the

term structure of equity returns?
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• Let’s start with the basic consumption CAPM.

• Preferences:

max
∞∑

s=0

Et (β
su(Ct+s)) ,

where u(x) = x1−γ/(1 − γ).

• Consumption growth is assumed to be i.i.d.

Δct+1 = μc + σcεc,t+1.

• The price of dividend strips in this case is given by:

Pt,n = Et (Mt:t+nDt+n) = φnDt,

where Mt:t+n = βn(Ct+n/Ct)
−γ denotes the n−period stochastic

discount factor and φn a constant that depends on maturity.

• The expected geometric return for strips of all maturities is

constant.

• In the most basic consumption CAPM, the term structure of

risk premia and volatility is constant across maturities.

• However, this model fails to reproduce the level and volatility

of both the risk-free rate and the equity risk premium.
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• Models that are successful at matching moments of the risk-

free rate and the equity risk premium:

– Campbell and Cochrane (1999) external habit formation

model.

– Bansal and Yaron (2004) long-run risk model.

– Gabaix (2012) and Wachter (2014) variable rare disasters

model.

• Let’s use the external habit model to illustrate the main pre-

dictions.

• In this model, the only modification relative to the consumption

CAPM are the preferences.

• The stochastic discount factor changes to:

Mt+1 = βe−γμce−γ(st+1−st+εc,t+1),

where st denotes the surplus consumption ratio with dynam-

ics:

st+1 = (1 − φ)s + φst + λ(st)vt+1,

where λ(st) is the sensitivity function which is chosen so that

the risk-free rate is constant.

• Here is what the external habit model (standard calibration)

implies for the term structure o dividend strips: expected re-

turns (first panel), return volatility (second panel), Sharpe ratio

(thrid panel)
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• Overview of theoretical benchmarks:

Expected returns Volatility Sharpe ratios

Data Down Down Down
Campbell and Cochrane (1999) Up Up Up
Bansal and Yaron (2004) Up Up Up
Gabaix (2012) Flat Up Down

– Despite different economic mechanisms, the external habit

and LRR model make similar predictions for the term struc-

ture of equity.

– In the variable rare disaster model, volatilities still increase

with maturity, but expected returns are flat, leading to

downward-sloping Sharpe ratios across maturities.
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3.2. Extracting the term structure of equity risk using the cross-section

of stocks

• Intuition: If different firms have different cash flow structures

across maturity, then differences in average returns across

stocks are informative about risk premia across maturities.

• Note: This is not about differences in average growth rates

(Chen, 2017), but it is about differences in risk exposures across

maturities, see also Hansen, Heaton, and Li (2008).

• Differences in average growth rates will generate differences in

risk premia only due to the term premium.

• See Cornell (1999), Dechow, Sloan, and Soliman (2004), Bansal,

Dittmar, and Lundblad (2005), and Da (2009) for early contri-

butions.

• Weber (2018) is a more recent example. Finds that low-duration

stocks outperform high-duration stocks by 1.1% per month,

but have lower betas. Favors behavioral explanation.
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• Hansen , Heaton, and Li (2008) measure the term structure of

expected returns for value and growth firms.

• Large differences in risk premia, for a fixed holding period, on

value and growth cash flows at longer horizons (Figure 2.B).

• Solid = Value, Dotted = Market, Dash-dotted = Growth.

• To construct this figure, Hansen, Heaton, and Li combine a

statistical model for the dynamics of consumption with recur-

sive preferences to obtain a SDF (i.e., the risk prices).

• Shocks are identified via joint VAR of consumption growth and

earnings.

• A similar statistical model for dividends of value and growth

portfolios provides the risk exposures of the cash flows.

• By combining risk prices and exposures, they can compute

risk premia across horizons.

• Note: Interesting variation for value and growth portfolios across

horizons, but not for the aggregate stock market.
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3.3. Extracting the term structure of equity risk from options

• Binsbergen, Brandt, and Koijen (2012) use the put-call parity

relationship for a European option on a dividend paying stock

to measure dividend strip prices directly

ct,T + Xe−rt,T (T−t) = pt,T + St − Pt,T ,

where pt,T and ct,T are the prices of a European put and call

options at time t, with maturity T and strike price X.

• Pt,T is the price of an asset that pays the dividends on the stock

between periods t and t+T , i.e., the short-term dividend asset.

• We compute the price of the short-term asset by rearranging

the equation above:

Pt,T = pt,T − ct,T + St − Xe−rt,T (T−t).

• Data set from the CBOE containing TAQ data on S&P 500 index

options.

• S&P500 index options are European-style options.

• Index data from Tick Data Inc.

• Futures data from Tick Data Inc.

• Interest rates from Option Metrics based on BBA LIBOR rates.

• Sample period: January 1996-October 2009.
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• Selecting the sample:

– Find pairs of put and call quotes with the same strike and

maturity that are closest together in time between 10am

and 2pm for the last trading day of each month.

– Pick the pair with the smallest time difference.

⇒ Typically, many matches within the same second.

– If multiple matches exist, take the median of all dividend

prices for a given maturity.

⇒ Designed to minimize measurement error and issues

related to microstructure noise.

– Pick the maximum maturity under 2 years and follow it

until another contract closer to 2 years is introduced.
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• Dividend prices in November 2006. Maturities: 0.31, 0.55,

0.81, 1.06, 1.56, and 2.05 years. S&P Value: 1397.92.

• Note that:

– If the wrong interest rate had been used, the lines would

not be flat. Indeed, one can recover the interest rate used

in markets by ensuring these lines are flat.

– If there had been a lot of microstructure noise or liquidity

effects, the “lines” would be “clouds” instead.
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• Here is what the procedure implies for the dividend strip prices:
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• Cumulative dividend prices as a share of the index:
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• The first two years of dividends represent about 4% of the to-

tal index value. Much less in 2001: recession expected to be

short.
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• Two dividend strategies:

– Buy two years of dividends (R1,t).

– Buy two years of dividends and sell the first six months

(R2,t).

• The second strategy is tax neutral and hence dividend taxation

does not explain these results.
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• Summary of results:

• Three puzzling findings compared to the benchmark models:

1. Average risk premia of short-maturity assets are large and

positive, while theoretical benchmarks predict near-zero

risk premia.

2. High volatility of short-maturity assets.

3. Sharpe ratios decline with maturity.

• Note: Because dividend strips are volatile, the risk premium

estimates based on this sample are insignificant or borderline

significant.
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• What matters is the comparison to the S&P500.

• Short-maturity assets have a market beta well below one.

• Consistent with the theory of Lettau and Wachter (2007), short-

maturity assets have a positive HML beta, although the expo-

sure is small.

• Three-factor alpha is 66bp per month or 8% per year.

• There seems to be excess compensation for bearing short-term

risk in the stock market.
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• Recall the excess volatility figure of Shiller.

• In Shiller’s calculations, one may worry about dividends far

out in the future. Using short-maturity assets, there is direct

evidence of excess volatility.
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• Summary so far:

1. Expected returns and Sharpe ratios on the short-term as-

set are higher than on the aggregate market, although sta-

tistical significance is weak because of:

2. The return volatility of the short-term asset is higher than

on the aggregate market.

3. The beta with respect to the aggregate stock market is 0.5.

4. The alpha with respect to the aggregate stock market is

about 8% per annum.

5. The prices of short-term dividends are more volatile than

their realizations, pointing to excess volatility on the short

end of the equity curve.

6. The returns on the short-term asset are predictable.

• These properties hard to explain using the leading macro-finance

models, where long-run risks tends to receive higher compen-

sation than short-term risks.
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3.4. Extracting the term structure of equity risk from futures

• Instead of using option prices, one can use direct evidence from

dividend futures.

• We use dividend futures to define equity yields.

• We start from the price of an n−period dividend strip (recall

Campbell-Shiller):

Pt,n = Dt exp (n(gt,n − μt,n)) .

• We define the per-period expected growth rate gt,n as:

gt,n =
1

n
Et

[

log

(
Dt+n

Dt

)]

,

• We decompose expected returns, μt,n, into a risk premium, θt,n,

and a Treasury yield, yt,n:

μt,n = θt,n + yt,n.

• This implies for the price of an n−period dividend strip:

Pt,n = Dt exp (−n(yt,n + θt,n − gt,n)) .
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• Binsbergen, Hueskes, Koijen, and Vrugt (2013) define the log

dividend yield on an equity strip, the equity yield, as:

et,n ≡
1

n
log

(
Dt

Pt,n

)

= yt,n + θt,n − gt,n.

• We do not observe the spot price Pt,n but its futures price:

Ft,n = Pt,n exp (nyt,n) .

• Define the forward equity yield as:

ef
t,n ≡

1

n
log

(
Dt

Ft,n

)

= θt,n − gt,n.

• How can you earn the risk premium θt,n?

• Buy the n-period futures contract at time t (known payment at

t, due at t + n), hold till maturity t + n, receive risky realized

dividends in period t + n.

• The n-period return is:

rD
t+n = log

(
Dt+n

Ft,n

)

= log

(
Dt+n

Dt

)

+ log

(
Dt

Ft,n

)

.

Because the forward price is known at time t, but paid at time

t + n, this is a zero-cost strategy, and no money is exchanged

at time t. The expected return on this strategy is given by:

Et

[
rD
t+n

]
= nθt,n.

• So this is a n-period risk premium, net of the bond risk pre-

mium (term premium).

43

http://www.sciencedirect.com/science/article/pii/S0304405X13002316


• van Binsbergen and Koijen (2017) use prices of dividend fu-

tures with maturities up to 10 years for 2002-2014 from four

major regions:

1. U.S.: S&P500.

2. Europe: Eurostoxx 50.

3. Japan: Nikkei 225.

4. U.K.: FTSE 100.

• Natural players in the market: derivatives desks, pension funds,

. . .

• Before 2008, these contracts are traded in over-the-counter

markets, but exchange-traded products available now.

• Pricing data from Goldman Sachs (to mark their internal trad-

ing books to the market). Data verified with the prices from

BNP Paribas and the data from exchange-traded options and

futures (Bloomberg).
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• The one-period return on a futures contract is given by:

RF
t,n = Ft,n−1/Ft−1,n − 1.

• Up to a first-order approximation, the return on the index, RM
t ,

can be written as the return on a portfolio of dividend futures

returns plus the return on a portfolio of bonds:

RM
t ≈

∞∑

n=1

wt−1,nR
F
t,n +

∞∑

n=1

wt−1,nR
B
t,n,

where the weights wt,n are given by wt,n = Pt,n/St and St is the

index level.

• To compare expected returns on short-term dividend futures

to those on the overall stock market, we compute the 10-year-

bond-adjusted market return, RM
B,t, as:

RM
B,t ≡

1 + RM
t

1 + RB
t,120

− 1.

• Alternatively, we can convert the dividend futures contracts to

spot contracts using the cost-of-carry formula:

Ft,n = Pt,n exp (nyt,n) .

• Then the no-arbitrage relationship in implies that the dividend

spot return RS
t,n can be computed as:

RS
t,n =

Pt,n−1

Pt−1,n
− 1 = (1 + RF

t,n)(1 + RB
t,n) − 1.
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• This return can be compared directly to the market return.

• Cumulative performance dividend futures contracts:
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• International evidence on CAPM betas across maturities:

• International evidence on excess volatility:
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• Short-maturity assets have significantly higher returns than

the market once we form international portfolios.

• One obtains more powerful statistical test as a result of inter-

national diversification.
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• Forward equity yields not only predict returns on dividend fu-

tures but also dividend growth

Δdt+1 = αn − βne
f
t,n + εt,n.
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• Forward equity yields not only predict dividend growth but also

economic growth more broadly, such as consumption growth
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• Forward equity yields are therefore useful indicators of risk

premia (+) and growth expectations (-), for instance around the

tsunami in Japan.

• Second graph isolates expected dividend growth.
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• Gormsen (2021) extends these facts and focuses on the time

variation in equity premia across maturities (for a fixed holding

period), conditional on good and bad times.

• Bad times are periods where the ex-ante dividend-price ratio

is in the top quintile of the time series.

• Unconditionally, the equity premia decline with maturity, also

for the longer sample from 1996 to 2019.

• However, the term structure of risk premia is upward sloping

in bad times and more steeply downward sloping in good times.
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• This result is robust across different ways of measuring eq-

uity term premia (using options, dividend futures, or using the

cross-section of stocks). These results are also robust across

sample periods.
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• Gomsen and Koijen (2020) study dividend futures during the

onset of the COVID-19 crisis in 2020.
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• They then extract the market’s expectation about future div-

idend growth and GDP growth by regressing dividend (GDP)

growth on the lagged forward equity yield (at 2-year maturity)

in the pre-covid era and use the fitted value and daily equity

yields during the covid era to form expected div (GDP) growth.
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• Covid-19 had initially far-out dividend strips fall in price, then

both short-end and long-end prices fell. The recovery was ex-

clusively in long-dated strips.
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3.5. Revisiting the structural asset pricing models

• One can test the theoretical asset pricing models directly. If we

simulate from the model, how likely is it to draw a sample that

looks like the data?

• Simulate 1,000 samples of 146 months from the external habit

model and find a minuscule likelihood that short-maturity as-

sets beat the index. Same for the long-run risk model.

• However, using expected returns as moments is not the most

powerful test of asset pricing models.

• Excess volatility on the short end of the equity curve leads to

much more powerful volatility tests.

• Recall that ef
t,n = θt,n − gt,n.

• We can compute the volatility on forward equity yields in the

models and compare it to that in the data.

• As before, we use the external habit model as a test.

• Equity yields are much too smooth in the habit model.
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• The dotted lines indicate the confidence interval, which points

to a powerful rejection of the model.
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• New theories have been proposed to address these facts on the

term structure of risk. They can be classified as:

– Alternative models of preferences.

– Alternative models of technology.

– Alternative models of beliefs.

– Heterogeneous agent models.

– Pricing models with an exogenous SDF.

∗ See for instance Lettau and Wachter (2007) and Lynch

and Randall (2014).

• We briefly discuss some of the main mechanisms.

• Few models (so far) are able to explain:

– Facts about average returns, Sharpe ratios, volatilities,

and equity yields jointly.

– Facts across asset classes.
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• Alternative models of preferences:

– Eisenbach and Schmalz (2016) and Andries, Eisenbach,

and Schmalz (2019) consider a model in which the rep-

resentative agent is more risk averse over imminent risks

than risks in the distant future.

∗ The model matches facts of the term structure of eq-

uity and variance risk.

• Alternative models of technology:

– Nakamura, Steinsson, Barro, and Ursua (2013) consider

a model with disasters and recoveries (see also Gourio,

2008).

∗ Long-term dividend strips are less exposed to disaster

risk due to economic recoveries.
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• Belo, Colin-Dufresnse, and Goldstein (2015) propose a model

to modify the dividend process.

– Start by modeling firms’ earnings, not dividends

– Assume that leverage ratios are stationary

– Shareholders are being forced to divest (invest) when lever-

age is low (high), which shifts long-horizon growth risk of

earnings to short-horizon dividends.

– As a result, dividends are more volatile than earnings over

short horizons, but equally volatile over long horizons as

dividends and earnings are co-integrated.
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Alternative models of beliefs:

• Croce, Lettau, and Ludvigson (2014) consider a model with

short-term and long-run shocks to consumption.

– The representative decision maker optimizes based on a

cash-flow model that is sparse in the sense that it ignores

cross-equation restrictions that are difficult (if not impos-

sible) to infer in finite samples.

– Assets that have small exposure to long-run consumption

risk, but are highly exposed to short-run (even i.i.d.) con-

sumption risk, can command high risk premiums in the

bounded rationality limited information case.

– As a result, the term structure of equity risk premia can

be downward sloping under the bounded-rational model,

while it is upward sloping under full-information model.
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Heterogeneous agent models:

• All the models so far are representative agent models.

• Lustig and Van Nieuwerburgh (2006) are the first to show that

a heterogeneous-agent model, where agents differ in their his-

tories of income shocks, can produce a downward-sloping term

structure of equity.

– Risk sharing of income shocks is limited by the amount of

housing collateral that agents have.

– Agents face both shocks to the wealth distribution, which

fluctuates at business cycle frequency, and shocks to hous-

ing collateral, which fluctuates at lower frequencies.

– A negative consumption shock temporarily increases dis-

count rates, but it does not affect housing collateral, which

governs discount rates in the long run.

– As a result, the price of consumption strips of longer ma-

turity is insulated from bad consumption shocks today,

which do affect short-maturity consumption strips.

• Hodor and Zapatero (2023) model investors that are heteroge-

neous in their investment horizon. Mutual fund managers are

focused on the short term, due to their compensation incen-

tives, while long-term value investors have longer investment

horizons. This structure can lead to downward sloping term

structure of expected returns when mutual funds’ appetite for

risk is strong.

63

http://www.econ.ucla.edu/people/papers/Lustig/Lustig389.pdf


3.6. Applications and Open Questions

• Real excess volatility:

– Hiring depends on the present value of marginal product

of labor minus wages.

– In the data, hiring is too volatile.

– Hall (2017) shows that variation in short-term discount

rates could explain the variation in hiring.

• The argument extends to investment as well, providing a poten-

tial link between asset prices and both investment and hiring

decisions.

• Indeed, it would be interesting to see whether we can use data

on various term structures to come up with discount rates that

can be used to understand hiring, investment, and the valua-

tion of both listed equity and private companies.
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• Gupta and Van Nieuwerburgh (2021) use the term structure of

risk in stock and bond markets to value private equity.

– In the process they extract term structures of returns for

value, growth, small, real estate, infrastructure, and nat-

ural resource stocks for the full post-war sample. Have

different shapes unconditionally, as well as dependence

on state of economy.

– Their asset pricing model matches the evidence from div-

idend strips from options and futures for the subsample

when data is available. Futures risk premium curve is not

particularly steeply downward sloping in the data sample.
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APPENDIX: Extracting expected returns and dividend growth

rates using the Kalman Filter

• Follows van Binsbergen and Koijen, 2010

• Denoting the demeaned expected growth rate of dividends by

ĝt = gt − γ0, we arrive at the final system

Δdt+1 = γ0 + ĝt + εd
t+1,

pdt+1 = (1 − δ1)A + B2(γ1 − δ1)ĝt + δ1pdt − B1ε
μ
t+1 + B2ε

g
t+1,

ĝt+1 = γ1ĝt + εg
t+1.

The first two equations are measurement equations. The third

equation is the transition equation of the latent variable.

• We estimate the model via maximum likelihood, where we use

the Kalman filter to construct the likelihood.

• We write the state and observation vectors in general form

Xt =









ĝt−1

εd
t

εg
t

εμ
t









, Yt =

[
Δdt

pdt

]

.

• We can write the dynamics of the state vector and observation

vectors as

Xt = FXt−1 + Γεt,

Yt = M0 + M1Yt−1 + M2Xt,

where the coefficient matrices F , Γ, M0, M1, and M2 follow from

the earlier equations.
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• In the Kalman filter, we recursively update our estimate of the

state.

• Define Xt|s = Es[Xt] and Pt|s = Es[XtX
′
t]. These are our best

estimates of the latent state and covariance matrix, conditional

on the information until time s.

• In the procedure below, we use s = t − 1 and s = t. However,

you can do similar calculations for s = T , which is our best

estimate of the latent state using the full sample. This is called

the Kalman smoother.

• We can now compute the likelihood. We initialize the filter us-

ing the unconditional distribution

X0|0 = E[X0] = 04×1,

P0|0 = E[X0X
′
0].

• Next, we construct predictions for time t using time-(t − 1) in-

formation:

Xt|t−1 = FXt−1|t−1,

Pt|t−1 = FPt−1|t−1F
′ + ΓΣΓ′.

• Based on these predictions, we can compute the residuals of

the observation equation and their covariance matrix

ηt = Yt − M0 − M1Yt−1 − M2Xt|t−1,

St = M2Pt|t−1M
′
2,
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where St = Et−1[ηtη
′
t]. We use this to construct the log likelihood

L = −
T∑

t=1

log(det(St)) −
T∑

t=1

η′
tS

−1
t ηt.

• To complete the iteration, we need to update Xt and Pt with the

new time-t observation

Kt = Pt|t−1M
′
2S

−1
t ,

Xt|t = Xt|t−1 + Ktηt,

Pt|t = (I − KtM2)Pt|t−1,

where Kt is called the Kalman gain and measures the revision

of the latent state based on the innovations, ηt.

• It is easy to show (see the appendix of van Binsbergen and Koi-

jen, 2010) that the Kalman filter effectively introduces moving

average terms of returns and dividend growth rates to predict

future returns and future dividend growth rates.
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