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1. Basic structure of the notes

• High-level summary of theoretical frameworks to interpret em-

pirical facts.

• Per asset class, we will discuss:

1. Key empirical facts in terms of prices (unconditional and

conditional risk premia) and asset ownership.

2. Interpret the facts using the theoretical frameworks.

3. Facts and theories linking financial markets and the real

economy.

4. Active areas of research and some potentially interesting

directions for future research.

• The notes cover the following asset classes:

1. Equities (weeks 1-5).

– Predictability and the term structure of risk (week 1)

– The Cross-section and the factor zoo (week 2)

– Intermediary-based asset pricing (week 3)

– Production-based asset pricing (week 4)

– Asset pricing via demand systems (week 5)

2. Mutual funds and hedge funds (week 6).

3. Options and volatility (week 7).

4. Government bonds (week 8).

5. Corporate bonds and CDS (week 9).

6. Currencies and international finance (week 10).

7. Commodities (week 11).

8. Real estate (week 12).
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2. The Cross-Section of Stock Returns

2.1. Cross-sectional Predictability

• Instead of predicting the return on the aggregate stock market,

there is a large literature that studies cross-sectional stock re-

turn predictability.

• The typical procedure is:

1. Sort stocks on a characteristic into quintile or decile port-

folios and document a pattern in average returns.

2. Construct a long-short strategy that buys the top quintile

or decile and shorts the bottom decile.

3. The factor constructed in step 2. is then used as a factor

to explain average returns.

• By forming a long-short strategy, we “net out” some of the pas-

sive exposures, for instance, to the market that would arise

from a long-only portfolio.

• This argument works as long as, for instance, market betas

and the characteristic you sort on are not highly correlated.

• As an alternative to portfolio sorts, you can show that a char-

acteristic predicts returns in the cross-section using the Fama-

MacBeth procedure. More on this later.
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• Typical empirical implementation of an investment strategy for

U.S. equities:

– Equity prices come from CRSP and accounting data is

from Compustat. CRSP-Compustat merged provides a vari-

able PERMNO that you can use to merge the data.

– Accounting data is released to the public with a lag. It is

common practice to lag the accounting data by 6 months

(sometimes 3 months) to ensure that the accounting data

are indeed available to investors at the time of portfolio

formation.

– Most research uses stocks listed on the AMEX, NASDAQ,

and NYSE. Sometimes papers impose a minimum price of

$1 or $5 to avoid looking at penny stocks.

– As most firms have their fiscal year-end in December, it is

common practice to sort portfolios in June and then track

the performance of the portfolios for the next 12 months.

– To sort stocks into portfolios, we typically use the charac-

teristics of the NYSE stocks, which tend to be larger firms,

to determine which stock goes into which portfolio.

– Within each of the portfolios, you can either value-weight

or equally-weight the stocks. The results are typically stronger

for equally-weighted returns as anomalies tend to be more

pronounced for smaller stocks. However, value-weighting

arguably leads to economically more meaningful results.

– If a firm defaults, it is important to use the delisting return

when available. Although imperfect, this is better than for-

getting about delisting returns altogether. See Shumway

(1997) for a discussion of delisting returns.
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• Note 1: Entry and exit in the stock market matters, see for

instance Pedersen (2018), although this issue has not received

as much attention:
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• Note 2: Even when quintile or decile portfolio returns are value-

weighted, this does not mean that there is the same fraction

of market cap in each of the quintiles or deciles nor that the

typical stock has a similar size across portfolios. For instance,

the median market cap in various momentum deciles (sort on

the price change over the last 12-2 months) looks like this:
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• Even if stocks in the extreme deciles are mispriced, how large

is the overall mispricing at an aggregate level?

• Looking at quintile and decile portfolios, even when returns are

value-weighted within the portfolio, may be misleading.

• See Hou, Xue, and Zhang (2020) for more on the role of firm

size and anomaly returns.
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2.2. Basic Equity Return Factors

• Main cross-sectional predictors that have been studied in the

literature

– Market beta.

– Market capitalization (“size”).

– Book-to-market (“value”).

– Lagged price changes (“Momentum”).

– Investment / asset growth.

– Profitability.

– Liquidity.
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2.2.1. Market beta

• The CAPM obviously motivates market beta as a variable to sort

stocks on. The Security Market Line:

Et[R
i,e
t+1] = βiEt[R

m,e
t+1]

Empirically implemented as the Security Characteristic Line:

Ri,e
t+1 = αi + βiRm,e

t+1 + ei
t+1

• However, the security market line appears to be too flat.

• For a summary of the facts, see Frazzini and Pedersen (2014).

These are the CAPM alphas of beta-sorted portfolios:

• If we simply form a long-short portfolio of low-beta minus high-

beta stocks, the portfolio is (by design) not beta-neutral.
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• Frazzini and Pedersen (2014) construct a beta-neutral portfolio

RBAB
t+1 =

1

βL
Re

L,t+1 −
1

βH
Re

H,t+1, (1)

where Re
L,t+1 is the excess return on the low-beta portfolio and

Re
H,t+1 the excess return on the high-beta portfolio.

• This Betting-Against-Beta factor, which is close to market-neutral,

earns high Sharpe ratios in most countries and asset classes.
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2.2.2. Size

• The size anomaly goes back to Banz (1981), and this is the first

major challenge to the CAPM. Small stocks earn positive CAPM

alphas.

• Size factor SMB: Small-Minus-Big portfolio

• The cumulative return on size, value, and momentum

• The size factor has not done particularly well since its discovery

in early 1980s.
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• Summary from Israel and Moskowitz (2013):

• The size effect has also been linked to the January effect, tax-

loss selling, and window dressing.

• The SMB factor has had an annualized return of -0.2% be-

tween January 2010 and June 2020. Compared with a 12.5%

excess return on the overall stock market, and compared with

an average SMB return of 2.7% from 1926.07-2009.12.

11

http://www.sciencedirect.com/science/article/pii/S0304405X12002401


2.2.3. Value

• In case of value, we sort on the book-to-market ratio.

• HML factor = Long value stocks (high BM), short growth stocks

(low BM).

• The value premium is larger for small firms. Again from Israel

and Moskowitz (2013):

• The HML factor has done very poorly in the last decade. Annu-

alized returns between January 2010 and June 2020 for HML

were -5.6% compared to +5.1% for 1926.07-2009.12.

• Normally, small value stocks outperform but large growth com-

panies did much better in the last decade driven by FAANG

(Facebook, Amazon, Apple, Netflix, Google; also Microsoft). Now

the magnificent seven, which includes Nvidia.
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• Value is related to long-term reversals, documented by De Bond

and Thaler (1985).

• Long-term reversal sorts stocks on their returns between months

t − 36 and t − 12. Long the losers, short the winners.
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2.2.4. Momentum

• In case of momentum, we sort on the price change between

months t − 12 and t − 2. Long the winners, short the losers.

• The most recent month is excluded as there are short-term

reversals (between t − 1 and t).

• Again, from Israel and Moskowitz (2013), where the columns

correspond to size (final column is a long-short strategy across

column 5 and column 1):

• Observations:

– Momentum returns and CAPM alphas are large one aver-

age.

– Momentum returns are not as strongly related to size.

– In forming a momentum portfolio, only information on

prices is required, which makes the momentum anomaly

all the more challenging to explain.

• Momentum (UMD factor) had annualized returns of 4.1% from

January 2010–June 2020, only half as large as the 8.4% return

from 1927.01-2009.12.
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2.2.5. Investment

• Investment is typically defined as capital expenditures.

• However, in the recent literature, changes in assets are labeled

investment.

• Asset growth strongly predicts returns in the cross-section,

where firms with high asset growth have low average returns.

• The main fact has been documented in Cooper, Gulen, and

Schill (2008):

• Fama and French call their investment factor CMA. It goes long

conservative (i.e., low investment) stocks and short aggressive

(high investment) stocks.
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2.2.6. Profitability

• Profitability is defined slightly differently in the main papers:

1. Novy-Marx (2013).

2. Hou, Xue, and Zhang (2015).

3. Fama and French (2015).

• The facts below are based on Novy-Marx (2013) using gross

profits/assets
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2.2.7. Liquidity

• Huge literature on liquidity and liquidity risk in finance.

• Pastor and Stambaugh (2003) study whether stocks that are

exposed to aggregate liquidity shocks earn higher expected re-

turns.

• Measurement challenge: How to measure liquidity risk?

• In theory, liquidity is the slope of the demand curve. In less

liquid markets, the residual demand curve is steeper.

• Hence, trades move prices temporarily from “fundamental” value,

and then gradually return. The paper focuses on temporary

price changes associated with order flow.

• For a classic paper on liquidity, see Campbell, Grossman, and

Wang (1993).
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• The three main steps to construct the Pastor and Stambaugh

aggregate liquidity factor:

1. Regress returns on lagged returns and dollar volume times

the sign of lagged returns within a month for a given stock

Re
i,d+1,t = θi,t+φi,tR

e
i,d,t+γi,tsign(Re

i,d,t)vi,d,t+εi,d+1,t, d = 1, . . . , D,

where Re
i,d,t = Ri,d,t − Rm,d,t with Rm,d,t the value-weighted

market return.

γi,t measures how price changes relate to trading the pre-

vious period. If there was a significant amount of trade

and the return was negative, we expect prices to partially

recover over the next day. Hence, we expect γi,t < 0.

2. We are interested in liquidity shocks, and hence would

like to compute innovations. A problem is that dollar vol-

ume trends over time. First differences are constructed

as:

Δγ̂t =
mt

m1
N−1

N∑

i=1

(γ̂i,t − γ̂i,t−1),

where where mt is the total dollar value of the stock market

at the end of month t − 1 of the stocks included in the

average in month t, and month 1 corresponds to August

1962, the beginning of the sample.

3. Aggregate liquidity shocks are computed as

Δγ̂t = a + bΔγ̂t−1 + c
mt−1

m1
γ̂t−1 + ut,

where ut is the liquidity shock that is used in the empirical

analysis. High, positive ut is a positive liquidity shock.
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• Form portfolios of stocks sorted by exposure to ut (covariance

of returns with u): liquidity beta.

• Value-weighted portfolio alphas by sorting on liquidity betas

(10: high positive covariance of returns with liquidity shock):

• The alphas are particularly large relative to the Fama and French

model and the 4-factor model.

• The alphas appear to be larger in the second part of the sample.
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• Interpreting reversals as measures of liquidity, means that the

profits of reversal strategies tell you when the benefits of liq-

uidity provision are particularly high. This idea is explored in

Nagel (2012).

• The benefits of liquidity provision are strongly correlated with

the VIX.

• Classic papers on liquidity in equity markets

– Measuring price impact: Hasbrouck (1991).

– Alternative measure of liquidity: Amihud (2002).

– CAPM with liquidity effects: Acharya and Pedersen (2005).
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2.3. Time-variation in Cross-sectional Predictability

• In addition to thinking about predictability in the time series

and the cross-section separately, there is also a literature study-

ing the predictability of anomaly portfolios.

• Cohen, Polk, and Vuolteenaho (2003) propose a predictor of

the value premium, the “value spread,” which depends on the

spread in valuation (B/M) ratios of value and growth stocks.

• The international evidence is consistent, but insignificant.
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• Haddad, Kozak and Santosh (2020) extend this idea, and show

that a broad range of long-short anomaly factors are predictable

by their own lagged valuation spread.

• Momentum has very extreme downturns.

• Momentum crashes just when the market turns around after

a downturn, see Daniel and Moskowitz (2016):
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• Momentum (UMD) factor had -5.3% return in 2020.04 when

the market recovered from the Covid-19 crash from 2020.02-

2020.03.

• Market volatility is also a good predictor of momentum returns.
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• Moreira and Muir (2017) show that this result holds more broadly.

• If we scale anomaly returns by lagged volatility (measured based

on daily returns over the last month), the Sharpe ratio in-

creases significantly. Hence, average returns do not scale with

volatility.

• Managed portfolios that take less risk when volatility is high

produce larger alphas.

• This poses a challenge for several risk-based explanations be-

cause these portfolios take less risk in recessions (when volatil-

ity tends to be high).
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• Cederburg, O’Doherty, Wang, and Yan (2020) argue that, while

the volatility-managed portfolios of Moreira and Muir have sig-

nificant positive alphas in spanning regressions, the trading

strategies implied by these regressions are not implementable

in real time and generate lower out-of-sample risk-adjusted re-

turns than the original factors.

• Stambaugh, Yu, and Yuan (2012) show that the performance of

many anomalies is related to “sentiment” as defined by Baker

and Wurgler (2006).

• Dynamics of sentiment (updated data until June 2022)
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• Alphas (controlling for the market, size, and value) of anomaly

strategies during periods of high and low sentiment on the long

and the short end

Re
it = αHdH,t−1 + αLdL,t−1 + bMKT + cSMBt + dHMLt + εit.

• Anomaly strategies perform significantly better when invest-

ment sentiment is high than when it is low.
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3. Estimating Factor Models

• See Cochrane chapters 11-14 for a detailed discussion on esti-

mating factor models. We provide a high-level summary here.

• Consider the model

Re
i,t = ai + β ′

iFt + εi,t, (2)

E(Re
i,t) = αi + β ′

iλ. (3)

• The key prediction is that αi = 0, ∀i.

• We distinguish two cases

1. The factors are excess returns themselves (“traded fac-

tors”).

2. The factors are non-traded, such as oil price shocks or

consumption growth.
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3.1. Traded Factors

• In the first case, we can estimate the model via time-series

regressions of (2) and αi = ai.

• We can use standard OLS results to test whether αi = 0.

• We are often more interested to test whether all pricing errors

are jointly zero, α1 = ∙ ∙ ∙ = αN = 0.

• If we assume returns are i.i.d. normal, Gibbons, Ross, and

Shanken (1989) show

T − N − K

N

(
1 + ET (Ft)

′Ω̂−1ET (Ft)
)
−1α̂′Σ̂−1α̂ ∼ FN,T−N−K ,

where

– N : Number of test assets.

– K: Number of factors.

– T : Length of the sample (time series).

– Σ: Covariance matrix of the regression residuals.

– ET (∙): Sample mean.

– Ω: Covariance matrix of the factors.
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• We can also use asymptotic theory, which does not require us

to make assumptions about the finite-sample distribution of

returns (i.e., normality) and leads to a χ2
N test statistic,

T
(
1 + ET (Ft)

′Ω̂−1ET (Ft)
)
−1α̂′Σ̂−1α̂ ∼ χ2

N .

• Note that Cov(α̂)−1 = T
(
1 + ET (Ft)

′Ω̂−1ET (Ft)
)
−1Σ̂−1 (and anal-

ogously for the GRS statistic).
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3.2. Non-traded Factors

• Recall the model

Re
i,t = ai + β ′

iFt + εi,t, (4)

E(Re
i,t) = αi + β ′

iλ, (5)

where we want to test the null hypothesis that αi = 0.

• In case of traded factors, we have that λ = E(Ft) and we can

directly test whether the alphas, the intercepts, are jointly zero.

• In case of non-traded factors, it still holds under the null that

the model prices all assets correctly

Re
it = β ′

iλ + β′
i(Ft − E(Ft)) + εit.

• This implies that in the time-series regression,

Re
i,t = ai + β ′

iFt + εi,t,

we want to test the restriction

ai = β ′
i(λ − E(Ft)).

• However, the problem is that we do not have an estimate of λ

and so we cannot directly test this restriction. In time-series

regressions with traded factors, we have λ̂ = ET (Ft).
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• There are two common procedures in case of non-traded fac-

tors

1. Cross-sectional (or, two-pass) regressions.

2. Fama-MacBeth.

3.2.1. Cross-sectional regressions

• Cross-sectional regressions proceed in two steps:

1. Estimate betas via time-series regressions as before, asset

by asset. This delivers one full-sample β̂i for each asset.

2. Estimate a cross-sectional regression of average returns

on the test assets on the betas estimated from the first

step (and a constant) to obtain the market price of risk

estimate λ̂:

ET (Re
i,t) = αi + β̂ ′

iλ.

• Form pricing errors for each test asset: αi = ET (Re
i,t) − β̂ ′

iλ

• We can now test whether the alphas from the second step are

jointly zero via

α̂′Cov(α̂)−1α̂ ∼ χ2
N−K .

We loose K degrees of freedom as we estimate K prices of risk,

which mechanically ensures that K linear combinations hold

exactly.
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• In this test, we ignored that betas have been estimated in the

first step. The estimated betas introduce an errors-in-variables

problem.

• To address this, we can adjust the covariance matrix of the

alphas using the Shanken (1992) correction (see Cochrane,

Chapter 12).

Cov(α̂) =
1

T

(
IN − β(β′β)−1β′

)
Σ
(
IN − β(β ′β)−1β′

)
(1 + λ′Σ−1

f λ),

where the term (1 + λ′Σ−1
f λ) is the modification of the standard

OLS formulas due to the fact that betas are estimated in the

first pass. In this notation, Σf is the covariance matrix of the

factors and Σ the covariance matrix of the residuals.

• A similar correction can be derived for the estimated risk prices

λ̂:

Cov(λ̂) =
1

T

(
(β′β)−1β ′Σβ(β ′β)−1(1 + λ′Σ−1

f λ) + Σf

)
,
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• Instead of using OLS, you can use GLS in the second step using

Cov(α) = T−1(Σ + βΣFβ ′) as the error covariance matrix.

• Derivation:

– The definition of α is given by α = Re
t − βλ.

– Use Re
t = a + βFt + εt and, under the null of the model,

E(Re
t ) = βλ = a + βE(Ft).

– The last two equations combined imply

Re
t = βλ + β(Ft − E(Ft)) + εt,

implying α = β(Ft − E(Ft)) + εt.

– Consequently, Cov(α) = T−1(Σ + βΣFβ ′).

• Why do we have Re
t instead of E(Re

t )? Re
t is the dependent vari-

able in the cross-sectional regression.

• Note that these procedures can also be used for traded factors,

but it does not necessarily give you the same results.

• If you (i) include the traded factor as a test asset and (ii) use

GLS in the second step, the estimates coincide.
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3.2.2. Fama-MacBeth

• The second main method for testing factor models with non-

traded factors is Fama-MacBeth regressions (Fama and Mac-

Beth, 1973)

• There are three steps:

1. Estimate the betas using time-series regressions. This

can be done using rolling windows or full-sample time-

series regressions.

2. Run a cross-sectional regression each period of realized

returns on the estimated betas from the first stage

Ri,t = αi,t + β̂i,tλt.

3. Compute the time-series average of the risk prices and al-

phas to obtain the final estimates. The standard deviation

of the means gives standard errors.

α̂i = T−1
∑

t

αit, λ̂ = T−1
∑

t

λt,

Cov(α̂) = T−1CovT (αt), V ar(λ̂) = T−1CovT (λ).

We can easily adjust the covariance matrices for serial

correlation in the estimates if necessary.

• The test of the factor model then becomes

α̂′Cov(α̂)−1α̂ ∼ χ2
N−K .

• Note: This ignores the estimation error in the betas.

34

http://www.jstor.org/stable/1831028?seq=1#nameddest=page_scan_tab_contents
http://www.jstor.org/stable/1831028?seq=1#nameddest=page_scan_tab_contents


• Fama-MacBeth regressions are also a common alternative to

sorting stocks into portfolios. In that case, we are not only

interested in testing the model but also in the slope estimates,

β̂t.

β̂ =
1

T

T∑

t=1

β̂t. (6)

• To test whether a characteristic significantly predicts returns,

we can compute the standard error of β̂ as:

V ar(β̂) =
1

T
V arT (β̂t). (7)

Using the Newey-West estimator, you can account for persis-

tence in slope (if there is any).

• Fama-MacBeth slopes are linear in returns,

β̂t = (x′
txt)

−1x′
tR

e
t+1 = w′

tR
e
t+1,

where wt is a vector of portfolio weights.

• For a good example of using Fama-MacBeth regressions to un-

derstand the link between returns and characteristics, see Lewellen

(2015).

35

http://faculty.tuck.dartmouth.edu/images/uploads/faculty/jonathan-lewellen/ExpectedStockReturns.pdf
http://faculty.tuck.dartmouth.edu/images/uploads/faculty/jonathan-lewellen/ExpectedStockReturns.pdf


• More generally, we can estimate asset pricing models using

GMM.

• Cochrane Chapter 13-15 discusses connections between the

various estimation approaches.

• GMM is attractive if we want to emphasize or de-emphasize

certain moments. This is equivalent to weighted-least squares

in cross-sectional regressions.

• This can be particularly important when we estimate a joint

pricing model across asset classes where variances and risk

premia differ significantly, for instance, across for bond and

stock markets as in Koijen, Lustig, and Van Nieuwerburgh (2017).

• Recent work by Giglio and Xiu (2021) proposes a new method

to test linear asset pricing models with non-traded factors that

can deal with the (ever-present) concern of omitted factors.

Proposes a three-pass methodology that exploits:

– the large dimensionality of available test assets

– a rotation invariance result to correctly recover the risk

premium of any observable factor, even when not all true

risk factors are observed and included in the model
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• There has been debate about whether to estimate factor models

using portfolios or single stocks. The basic tradeoff is:

– Sorting stocks into portfolios mitigates idiosyncratic noise

(because of portfolio diversification) and leads to more

precise estimates of factor exposures, βi.

– Sorting stocks into portfolios reduces the spread in betas

in the cross-section, which is what we need to estimate

accurately estimate the risk prices, λ.

• Relevant references are Ang, Liu, and Schwarz (2020), Gagliardi,

Ossola, and Scaillet (2016), and Cattanea, Crump, Farrell, Schaum-

burg (2020).

• Many of these papers use N, T asymptotics, using the argu-

ment that there are often more stocks than time periods.

• This is true, but the size distribution of firms is highly skewed

(Gabaix, 2011), which means that the “value-weighted” or “ef-

fective” number of observations may be a lot smaller.
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4. The Factor Zoo

• As discussed above, the factor literature in empirical asset

pricing (for stocks) has historically evolved as follows:

1. CAPM.

– Excess return on the market as the single factor.

2. 3-factor Fama and French model (Fama and French, 1992).

– Market factor + size (SMB) + value (HML).

3. 4-factor Carhart model (Carhart, 1997).

– Market factor + size (SMB) + value (HML) + momen-

tum.

4. 5-factor Fama and French model (Fama and French, 2015)

or the related model by Hou, Xue, and Zhang (2015).

– Market factor + size (SMB) + value (HML) + profitabil-

ity + investment.

• Researchers sometimes add the Pastor and Stambaugh (2003)

aggregate liquidity factor alongside the 3-, 4-, or 5-factor mod-

els.

38

http://www.journals.uchicago.edu/doi/pdfplus/10.1086/374184
http://rfs.oxfordjournals.org/content/early/2014/09/23/rfs.hhu068
http://www.sciencedirect.com/science/article/pii/S0304405X14002323
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1997.tb03808.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1992.tb04398.x/abstract


• The additional factors are often designed to be roughly inde-

pendent. For instance, Fama and French construct SMB and

HML as

SMB =
1

3
(SmallV alue + SmallNeutral + SmallGrowth)

−
1

3
(BigV alue + BigNeutral + BigGrowth),

HML =
1

2
(SmallV alue + BigV alue) −

1

2
(SmallGrowth + BigGrowth),

where they first form six portfolios based on size (Small or Big)

and book-to-market (Value, Neutral, Growth).

• Such factor models have also huge practical applications:

– Many index funds and ETFs target these factors directly

(”style investing” or “smart beta” strategies).

– Provides a benchmark and style classification of mutual

funds and hedge funds (see for instance the style box at

Morningstar).
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• Over the past 30 years, the anomalies literature has discov-

ered many characteristics and/or factors s.t. when stocks are

sorted into portfolios based on the characteristic or factor ex-

posure, the long-short portfolio has an alpha w.r.t. the bench-

mark model

• The benchmark model has become more sophisticated over

time: the CAPM, then the 3-factor, 4-factor, and 5-factor mod-

els.

• Major concern: There are too many factors. Cochrane’s 2011

presidential address referred to this as the factor zoo.

40



• Pontiff and McLean (2016) study 97 variables that (suppos-

edly) predict returns in the cross-section.
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• They study the performance of these variables during two out-

of-sample periods:

1. Once the paper is publicly available, but before it is pub-

lished.

2. Following the publication of the article.

• Main regression:

Rit = αi + β1Post Sample Dummyit + β2Post Publication Dummyit + eit,

where the Post Sample Dummy is 1 if the observation is after

the original sample used in the paper but before the publica-

tion date. Post Publication Dummy is 1 if the observation is

after the publication date in the journal.

• In-sample mean of the anomalies is 58.2bp per month.

• Portfolio returns are 26% (=0.150/0.582) lower out-of-sample

and 58% (=0.337/0.582) lower post-publication. Hence, they

estimate a 32% lower return from publication-informed trading

(58%-26%). Investors learn about mispricing from academic

publications!
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• The plethora of factor raises concerns about data mining. Sta-

tistical tests should account for “pre-testing,” which is an old

problem in econometrics. You cannot use conventional criti-

cal values to conclude that a a factor is priced or a variable

predicts returns since that ignores pre-testing.

• Recently received significant attention via Harvey, Liu, and Zhu

(2016) in cross-sectional asset pricing, the topic of Campbell

Harvey’s 2017 presidential address to the AFA.

• Number of factors and corrected t−statistics:

• Note that size, for instance, would have been insignificant at

the moment of introduction if these critical values would have

been used. Harvey, Liu, and Zhu (2016) suggest a t−statistic

between 3.5 and 4.

• Of course, we do not know how many tests researchers ran

before reporting the results, so we cannot correct perfectly for

pre-testing.
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• This is just for U.S. data. Suppose we assume for a second

that the Fama-French 5-factor model does a good job pricing

the cross-section of U.S. stock returns.

• Fama and French develop international versions of their model,

see Fama and French (2015). They conclude:

Fama and French (2012) find that a Global version

of the FF (1993) three-factor model does not explain

international returns. A simple test produces the

same negative conclusion for the five-factor model.

We summarize the results, but do not present a ta-

ble. We estimate 20 five-factor regressions in which

the LHS returns are regional factors (five local fac-

tors for each of four regions) and the RHS returns

are five Global factors. If the Global model describes

expected returns, the 20 regression intercepts are

indistinguishable from zero. In fact, five are more

than three standard errors from zero, seven are more

than two, and the GRS test of Gibbons, Ross, and

Shanken (1989) says the probability the true inter-

cepts are zero is tiny, zero to at least five decimal

places.

• Hence, even the latest generation of factor models cannot price

equity returns across four major regions (North America, Eu-

rope, Asia Pacific, and Japan).

• The main takeaway is that more structure and data are needed

to discriminate among various factor models.
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4.1. Using holdings data to discriminate between models

• One approach is to ask which factor model investors are using

by using data on changes in stock holdings, or flows.

• Berk and van Binsbergen (2016) look at flows and returns to-

gether to study the risk model that mutual fund investors use.

• Basic idea:

– There are decreasing returns to scale in active manage-

ment and investors compete alphas to zero.

– Investors learn about the manager’s skill based on past

performance, Rit − Rbt, where Rit is the manager’s return

and Rbt the risk-adjustment prescribed by an asset pricing

model ⇒ Et([Ri,t+1 − Rb,t+1]αi,t+1) > 0.

– Alphas are unobservable, but flows are. When the man-

ager outperforms a model, the flow should be positive (and

vice versa).

• Main conclusions:

– The CAPM is the closest model to the model that investors

use to decide on their capital allocation decisions.

– The CAPM better explains flows than no model at all, in-

dicating that investors do adjust for risk.

– The CAPM also outperforms a naive model in which in-

vestors ignore beta and simply chase any outperformance

relative to the market portfolio (β = 1 model).
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– Authors’ conclusion: The CAPM “is still the best method

to use to compute the cost of capital of an investment

opportunity” and should be used in making capital bud-

geting decisions.

• Paper by Barber, Huang, and Odean (2016) reaches essentially

the same conclusion. They find that fund flows are more highly

correlated with CAPM alphas than with other multi-factor al-

phas. But their conclusion is different: investors display lim-

ited sophistication.

• Agarwal, Green and Ren (2018) and Blocher and Molyboga

(2017) carry out similar tests with samples of hedge funds.

• This research has recently attracted some controversy.

Jagadeesh and Mangipudi (2021) argue that the strength of

the predictive relation between fund flows and alphas is not a

reliable moment to make inference about the true/best asset

pricing model nor about investor sophistication.

– Find that 4-factor alphas are most precise when the true

betas are unknown to the econometrician, even if the true

asset pricing model is the CAPM
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4.2. Using statistical techniques to “shrink” the factor zoo

• An active literature uses machine-learning tools to screen out

the redundant and useless factors (due to data mining) from

the truly useful asset pricing factors.

• Machine learning refers to collection of techniques:

– High-dimensional models for statistical prediction

– Regularization (penalization) methods for model selection

and mitigation of overfit

– Efficient algorithms for searching among vast number of

potential model specifications, incl. non-linear relations

• More flexible than traditional econometric techniques, bring-

ing hope of better approximating unknown and complex data

generating process underlying equity risk premia, but at the

risk of overfitting.

• See May 2020 special issue of RFS, introduced by Karolyi and

Van Nieuwerburgh (2020)
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• Gu, Kelly, and Xiu (2020) compares machine learning tech-

niques in asset pricing context

• Employs typical “big” data set

– 30,000 individual stocks over 60 years from 1957-2016

– 900 predictors

∗ 94 characteristics

∗ interactions of each characteristic with 8 aggregate

time-series variables

∗ 74 industry sector dummy variables

– The predictors quickly increase in the thousands once

(non-linear) interactions among them are considered.

• Generic model for excess returns:

Re
i,t+1 = Et[R

e
i,t+1] + εi,t+1 = G(zi,t) + εi,t+1

where G(∙) is the same across time and across stocks, and only

uses information at time t and for stock i.

4.2.1. Linear Model (with robust objective functions)

• Linear model: G(zi,t; θ) = z′i,tθ.

• OLS minimizes the standard L2-normed loss function:

L(θ) =
1

NT

N∑

i=1

T∑

t=1

(ri,t+1 − G(zi,t; θ))
2
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• Robust objective functions are an extension that allows to weight

the different observations unequally, for example to deal with

an unequal number of stocks across periods, or to use value

weights (instead of equal weighting)

• Weighted least squares:

LW (θ) =
1

NT

N∑

i=1

T∑

t=1

wi,t (ri,t+1 − G(zi,t; θ))
2

• Objective function to deal with outliers/heavy tails of return

distribution:

LH(θ) =
1

NT

N∑

i=1

T∑

t=1

H (ri,t+1 − G(zi,t; θ); ξ)

where the Huber loss function H(∙) is the squared loss for small

errors and the absolute loss for large errors, controlled by the

tuning parameter ξ

H(x; ξ) =

{
x2, if |x| ≤ ξ

2ξ|x| − ξ2, if |x| > ξ
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4.2.2. Penalized Linear Model

• The linear model is bound to fail with many predictors. When

the number of predictors P approaches or exceeds the number

of observations T , OLS becomes inefficient or even inconsis-

tent. It overfits noise rather than extracting signal.

• Regularization: penalize the linear model to favor more parsi-

monious specifications:

L(θ) = L(θ)
︸︷︷︸

Loss fcn

+ P(θ; )
︸ ︷︷ ︸

Penalty fcn

• Elastic net penalty function with tuning parameters λ and ρ

P(θ; λ, ρ) = λ(1 − ρ)
P∑

j=1

|θj| +
1

2
λρ

P∑

j=1

θ2
j

• Special case 1: LASSO: ρ = 0, see Tibshirani (1996)

– L1 parameter penalization, on absolute values

– Selection method that zeros out coefficients on subset

of predictors

• Special case 2: Ridge regression: ρ = 1

– L2 parameter penalization, drawing all coefficient estimates

closer to zero

– Shrinkage method that prevents coefficients from be-

coming too large
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4.2.3. Dimension reduction: PCR, PLS, RP-PCA

• Penalized linear models like the elastic net use shrinkage and

variable selection to reduce dimensionality by forcing coeffi-

cients on most predictors to zero or near zero.

• This can produce suboptimal forecasts when predictors are

highly correlated

• Forming linear combinations of predictors may be better to re-

duce noise and isolate the signal and to help de-correlate pre-

dictors

• Two classical dimension reducing techniques are Principal Com-

ponents Regression (PCR) and Partial Least Squares (PLS)

• PCR:

wj = arg max
w

V ar(Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ∙ ∙ ∙ , j−1

Step 1 Find K << P principal components of a set of predictors.

Those are the K linear combinations of factors that ex-

plain most of the covariance of the predictors.

Step 2 Use the leading PCs in a linear predictive regression

• No guarantee that resulting factors are good return predictors.
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• PLS, which goes back to Wold (1966), instead chooses K linear

combinations of factors Z to have maximal predictive associa-

tion with the forecast target, excess returns:

wj = arg max
w

Cov2(R,Zw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ∙ ∙ ∙ , j−1

• PLS sacrifices how well the K linear combinations of Z approx-

imate Z to find components that are better return predictors.

• Risk-Premium-PCA: Lettau and Pelger (2020) consider another

variant of PCA analysis, which they label RP-PCA

• The idea is to not only use information on the covariance of re-

turns but also on the mean of returns (first+second moments)

• Let the T ×N matrix of excess returns be R, the T ×K matrix of

principal components F and the K × N loadings of the assets

on the factors Λ

R = FΛ′ + e

• Rather than finding the PCs of the sample covariance matrix
1
T R′R − R̄R̄′ by minimizing:

min
Λ,F

1

NT

N∑

i=1

T∑

t=1

(ri,t − FtΛ
′
i)

2

• RP-PCA penalizes the objective function for big pricing errors

min
Λ,F

1

NT

N∑

i=1

T∑

t=1

(ri,t − FtΛ
′
i)

2
+ ζ

1

N

N∑

i=1

(
ri − FΛ′

i

)2

• This is equivalent to applying PCA to the matrix 1
T R′R + ζR̄R̄′
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• Thus, if tuning parameter is ζ = −1, back to standard PCA.

• Selects factors that not only have high Sharpe ratios (large

PCs), but that can also explain the cross-section (small pricing

errors). Standard PCA would throw out factors with small SRs

but that are important for pricing the cross-section.

• Application considers 25 size/accruals double-sorted portfo-

lios and 3 factors. PCA (ζ = −1) has SR of 0.13 while RP-PCA

(ζ = 10) has SR of 0.24.

• Figure shows heat map of loadings on 3 factors. Loadings on

first two factors are similar for PCA (ζ = −1) and RP-PCA (ζ =

10). Third PCA factor has no clear pattern and low SR (0.02),

while third RP-PCA factor loads positively on low-accrual stocks

and negatively on high-accrual stocks and high SR (0.20).
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4.2.4. Generalized Linear Model

• Linear models may poorly approximate potential non-linear re-

lationship between predictors and returns.

• Non-parametric models of G(z; θ) can reduce this measurement

error, at the risk of over-fitting and destabilizing the model out-

of-sample

• Spline series expansion of predictors

G(z; θ, p(∙)) =
P∑

j=1

p(zj)
′θj

where p(∙) = (p1(∙), . . . , pK(∙)) is a K × 1 vector of basis functions

and θ is now K × P

• Use least-squared objective function with Huber robustness

modification and with group LASSO regularization

P(θ; λ,K) = λ
P∑

j=1

(
K∑

k=1

θ2
j,k

)1/2

Group LASSO selects either all K spline terms of a given pre-

dictor or none of them.

54



4.2.5. Boosted Regression Trees and Random Forests

• Generalized linear model captures non-linearities of predictors

but not interactions between predictors.

• Regression trees are popular way to incorporate multi-way pre-

dictor interactions.

• Tree with K leaves (terminal nodes) and depth L

G(zi,t; θ,K, L) =
K∑

k=1

θk1zi,t∈Ck(L)

• To grow a tree is to find bins that best discriminate among the

potential outcomes of the predictor.

• Simple example: tree based on size and BM. Tree first sorts

observations based on size, then on BM.

G(zi,t; θ, 3, 2) = θ11sizei,t<0.51BMi,t<0.3+θ21sizei,t<0.51BMi,t≥0.3+θ31sizei,t≥0.5
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• Simple objective function is to myopically minimize forecast er-

ror (“impurity”) at the start of each branch C

H(θ, C) =
1

|C|

∑

zi,t∈C

(ri,t+1 − θ)2

where |C| is number of observations in set C

Trees of depth L can capture (L − 1)-way interactions

• Boosting is a first regularization method. It recursively com-

bines forecasts from many shallow trees (small L). For exam-

ple, gradient boosted regression trees (GBRT).

• Random forest is a second regularization method. Example of

bootstrap aggregation or “bagging.” Draw B bootstrap samples

of data, fit regression tree to each, average their forecasts. Ran-

dom forests reduce correlation among trees in different boot-

strap samples by only considering a randomly drawn subset of

predictors in each bootstrap sample.
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4.2.6. Neural Networks

• Most powerful “deep learning” algorithms

• Also most complex and least transparent; prone to overfitting

• Combines an “input layer” of predictors with one or more “hid-

den layers” that interact and non-linearly transform the pre-

dictors, and “output layer” that aggregates hidden layers into

ultimate outcome prediction.

• At each “neuron,” an “activation function” f transforms inputs

into output

G(z; θ) = θ
(1)
0 +

5∑

k=1

x
(1)
k θ

(1)
k

x
(1)
k = f

(

θ
(0)
k,0 +

4∑

j=1

z
(1)
j θ

(0)
k,j

)

Popular choice for f is rectified linear unit (RLU): f(x) = x if

x > 0 and zero otherwise.
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4.2.7. Modified Fama-MacBeth

• The apparent good performance of several asset pricing models

in the literature may be the spurious outcome of a weak iden-

tification problem. For more on the weak instruments problem

applied to asset pricing, see Kleibergen, 2009.

• These weak or completely spurious factors may in turn make

it more difficult to detect the true asset pricing factors.

• Bryzgalova (2016) replaces the second stage of Fama-MacBeth

by a penalized version

λ̂penalized = arg min
λ

1

2N

(
ET (Re

t ) − β̂λ
)′

WT

(
ET (Re

t ) − β̂λ
)
+ηT

K∑

j=1

wj | λj |,

– WT is the weighting matrix and wj is a measure of the

correlation between portfolio returns and factor j.

– For ηT = 0, we obtain the standard Fama-MacBeth esti-

mator. For more severe penalties, we start shrinking risk

premia to zero.

– L1 penalty on the λ’s, essentially on the correlation of be-

tas with average returns, a measure of factor strength.

– Many macro factors tend to fall out because they have a

weak correlation with stock returns.
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• Han, He, Rapach, and Zhou (2023) also extend the Fama-

MacBeth framework for cross-sectional return prediction to big

data and machine learning. Use over 200 firm characteristics,

find significant improvement in cross-sectional return forecasts.
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4.2.8. Hyper-parameters

• All of these techniques have “hyper-parameters” or “tuning pa-

rameters,” like λ and ρ in the elastic net approach, that need to

be chosen. Some approaches such as neural networks (deep

learning) have many of these parameters. How to choose them?

– Little theoretical guidance.

– Usual approach is to split data sample into three disjoint

time periods.

– Training sample to estimate the model for specific set of

tuning parameters.

– Validation sample to optimize over hyper-parameters by

re-estimating model from training sample each time.

– Results are then for a third, out-of-sample period.
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4.2.9. Miscellaneous

• There is a host of new papers with related dimension reduction

techniques which we will just mention in passing. This is an

active literature.

– Based on firm characteristics, Kelly, Pruitt, and Su (2019)

find seven factors that are significant using their instru-

mented principal components analysis (IPCA).

– Feng, Giglio, and Xiu (2020) find 14 out of 99 important

factors with LASSO

– Freyberger, Neuhierl, and Weber (2020) find significant

improvements for pricing using a non-parametric LASSO

method.

– Using Bayesian LASSO, Kozak, Nagel, and Santosh (2020)

find the best linear combinations of characteristics-based

factors in a SDF framework and estimate the parameters

by numerically solving a dual-penalty problem.

– Chen, Pelger, and Zhu (2023) also employ an SDF frame-

work, but use neural networks and extensive economic

conditioning information (selected by an adversarial net-

work).

– He, Huang, Li, and Zhou (2022) use the reduced rank

approach (RRA) to find the best 5-factor model to explain

the cross-section of industry returns. The approach does

not outperform the FF 5-factor model when it comes to

pricing individual stock returns.
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– Bandi, Chaudhuri, Lo, and Tamoni (2021) decompose sys-

tematic risk into its various spectral frequencies (hori-

zons). The horizon of the risk exposures may provide an

important dimension to reduce the dimensionality of pric-

ing models. CAPM model based on low-frequency spectral

betas works better than the FF 3-factor model.

– Lonn and Schotman (2023) form factor-mimicking port-

folios (fmps) for macro-economic factors, essentially re-

gressing them on 900 stock return portfolios. This is a

small-T, large-N problem. They use a statistical learning

technique called L2-boosting, which uses an information

criterion to penalize model complexity. They use these

fmps to form a SDF in the spirit of Hansen and Jagan-

nathan (1991).

– Ghosh, Julliard, Taylor (2017) non-parametrically esti-

mate a time series for the SDF Mt extracted from the

cross-section of excess stock returns Re
t using a relative

entropy minimization approach.

arg min
Mt

E[Mt log(Mt)] s.t. E[MtR
e
t ] = 0

The solution is:

M̂t =
exp(θ̂′TRe

t )
1
T

∑T
t=1 exp(θ̂′TRe

t )

where θ̂T is the vector of Lagrange multipliers that min-

imize 1
T

∑T
t=1 exp(θ′Re

t ). The subscript T refers to the last

period of the sample; the estimation can be done on a

rolling window basis.
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They then use this (single-factor) “I-SDF” out-of-sample

for cross-sectional pricing and optimal asset allocation.

This works much better. The I-SDF has annual alphas of

14-16% relative to the FF5-factor model.

The SDF is particularly high in those recessions in which

the stock market does poorly.

4.3. Reflections on the Factor Zoo Literature

1. Heading off model and method mining

– Like the Harvey multiple testing critique, ML tech-

niques require many implementation decisions. The

fear is overfitting in the testing sample.

– Providing Monte Carlo simulations, allowing for a larger

set of hyper-parameters, broadening the sample of se-

curities, and proving statistical properties of the es-

timator are all steps researchers can take to alleviate

concerns.

2. Finding common ground across methods

– Many methods suggest a modest number of factors

– But different methods appear to result in different

factors. We need a better understanding of why and

how the factors that result from the various methods

differ from each.

– For example, isolating their common component, or

focussing on correlation of a factor with a candidate

SDF
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3. The need for economic interpretability

– The end goal should be that we arrive at an SDF

that comes closer to achieving the mean-variance ef-

ficient portfolio and that the SDF be economically in-

terpretable.

– Economic interpretability remains a challenge for all

ML approaches, and is particularly acute for the more

black-box-like approaches such as neural networks.

– Only with solid economic intuition can such a syn-

thesis of empirical evidence serve as the basis for

more realistic asset pricing theories.

– A natural next step is to incorporate holdings data

and to use ML to better understand what factors (and

what information) drive individual and institutional

portfolio choices. It is important to better understand

how prices and expected returns reflect the informa-

tion actual investors use to form their portfolios.
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