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1. Basic structure of the notes

• High-level summary of theoretical frameworks to interpret em-

pirical facts.

• Per asset class, we will discuss:

1. Key empirical facts in terms of prices (unconditional and

conditional risk premia) and asset ownership.

2. Interpret the facts using the theoretical frameworks.

3. Facts and theories linking financial markets and the real

economy.

4. Active areas of research and some potentially interesting

directions for future research.

• The notes cover the following asset classes:

1. Equities (weeks 1-5).

– Discount rates and the term structure of risk (week 1)

– The Cross-section and the factor zoo (week 2)

– Intermediary-based Asset Pricing (week 3)

– Production-based asset pricing (week 4)

– Demand-based asset pricing (week 5)

2. Mutual funds and hedge funds (week 6).

3. Volatility (week 7).

4. Government bonds (week 8).

5. Corporate bonds and CDS (week 9).

6. Currencies and international finance (week 10).

7. Commodities (week 11).

8. Real estate (week 12).
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2. Volatility Facts

2.1. Measuring Variance

• Ways to measure or estimate variance:

1. Parametric models (e.g., GARCH).

2. Realized variance using high-frequency data.

3. Implied volatility using options.

4. Text-based variance measures.

• Before high-frequency data were available, the conditional vari-

ance of returns, σ2
t = Vt(Rt+1), was measured via GARCH-style

models.

• High-frequency data makes variance effectively observable, but

GARCH-style models are still useful for predicting future volatil-

ity.
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2.1.1. Parametric models

• GARCH(p,q) model (Bollerslev, 1986)

rt+1 = μ + ηt+1,

ηt+1 = σtεt+1,

σ2
t = ω +

p∑

i=1

βiσ
2
t−i +

q∑

j=1

αjη
2
t+1−j,

where εt+1 ∼ N (0, 1), i.i.d., αj ≥ 0, βi ≥ 0, ω ≥ 0.

• To capture the persistence of volatility with the original ARCH(q)

model (Engle, 1982), we need many lags.

• The same logic as ARMA processes in time-series economet-

rics.

• By now, there are lots of extensions of such models, see Boller-

slev (2008) for an overview.

• There are also many multivariate extensions modeling the con-

ditional covariance matrix of returns (BEKK, VECH, DCC, . . . ).

• GARCH(1,1) is a commonly-used specification

σ2
t = ω + αη2

t + βσ2
t−1.

• Note that

σ2
t = ω + (α + β) η2

t − β
(
η2

t − σ2
t−1

)
,

and after adding η2
t+1on both sides

η2
t+1 = ω + (α + β) η2

t − β
(
η2

t − σ2
t−1

)
+
(
η2

t+1 − σ2
t

)
,
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it shows that a GARCH(1,1) can be viewed as an ARMA(1,1) for

η2
t+1, where η2

t+1 − σ2
t are the innovations.

• Shocks to η2
t −σ2

t−1 feed into η2
t+1 in the next period at rate β < 1

and then persist into the following periods at rate α + β (close

to 1).

• This means that α + β governs the persistence of conditional

variance in the GARCH(1,1) model.

• Also, we need α + β < 1 to ensure covariance stationarity.

• Applying the basic ARMA(1,1) logic to see that the uncondi-

tional mean of the conditional variance equals

σ2 = E(σ2
t ) = E(η2

t ) =
ω

1 − α − β
.

• We can use GARCH models for forecasting.

• One-period forecast

Et

(
η2

t+1

)
= σ2

t .

• Two-period forecast

Et

(
η2

t+2

)
= ω + (α + β) σ2

t

= σ2 + (α + β)
(
σ2

t − σ2
)
.

• k−period forecast

Et

(
η2

t+k

)
= σ2 + (α + β)k−1 (σ2

t − σ2
)
.

5



• Estimation is typically done via Maximum Likelihood

• Denote θ = (μ, α, β, ω),

rt+1 | σ2
t = N

(
μ, σ2

t

)
.

• The conditional density is

l
(
rt+1 | σ2

t ; θ
)

=
1

√
2πσ2

t

e−
1
2 (rt+1−μ)2/σ2

t .

• The conditional likelihood of the data

L
(
rT , ..., r1 | σ2

0; θ
)

=
T∏

t=1

l
(
rt | σ2

t−1; θ
)
.

• We maximize this likelihood over θ.

• The likelihood is conditional on σ2
0.

– It is common to set σ2
0 equal to the unconditional variance.

– Asymptotically, the impact of the pre-sample values disap-

pears, but it matters in finite samples in particular when

α + β is close to 1.

• The asymptotic covariance matrix of the ML estimator is cal-

culated (as always) based on the second derivative of the log

likelihood w.r.t. the parameters (inverse of Hessian matrix):

V ar(θ̂) =

(

E

[
∂l

∂θ

∂l

∂θ′

])−1

.
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2.1.2. Realized volatility

• Realized volatility uses high-frequency data to measure vari-

ance.

• Simple example: Suppose we sample returns in n intervals of

length h, so that T = nh.

• Assume that log prices, pt (with dividends reinvested), are a

geometric Brownian motion with constant volatility

dpt = μdt + σdWt,

where Wt is a standard Brownian motion.

• We have for the h-period return:

rt+h,h = pt+h − pt ∼ N
(
μh, σ2h

)
,

for any h > 0.

• The standard maximum likelihood estimators of μ and σ2 are

μ̂ =
1

nh

n∑

k=1

rkh,h,

σ̂2 =
1

nh

n∑

k=1

(rkh,h − μ̂h)2 .
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• If we compute the asymptotic distribution of the estimators:

√
T (μ̂ − μ) →d N(0, σ2),

√
n
(
σ̂2 − σ2

)
→d N(0, 2σ4).

• Key insight: The asymptotic variance of σ̂2 only depends on n

and not on T .

• If we fix T and sample the data more frequently, then n → ∞,

and we can get an arbitrarily precise estimator of σ2, no matter

how small T .

• In contrast, to get a more precise estimator of μ we need to

increase T .

• Logic explained further in Merton (1980).

• Now suppose volatility is time-varying and log prices are a

semi-martingale

dpt = μdt + σtdWt,

where σt is a predictable process and square integrable,

E

(∫ t

0
σ2

sds

)

< ∞.

• Then, with rt+1 = pt+1 − pt, and conditioning on the path of σt

we have

rt+1 | {σt+τ}τ∈[0,1] ∼ N

(

μ,

∫ 1

0
σ2

t+τdτ

)

,

where
∫ 1

0 σ2
t+τdτ is referred to as the integrated variance.
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• In the absence of jumps, the quadratic variation equals the

integrated variance. In this case, it holds:

1/h∑

k=1

r2
t+kh,h → QV (t, t + 1) = IV (t, t + 1) =

∫ 1

0
σ2

t+τdτ,

as h → 0. Applied in finance by Andersen and Bollerslev (1998).

• Hence, with frequent sampling, we can –asymptotically–

measure integrated variance without error from realized vari-

ance by summing squared returns.

• In practice, this means that we estimate realized volatility, say,

every day, using data sampled intra-daily. We then treat the

daily realized volatilities as an observed random variable for

which we can use standard ARMA machinery for forecasting.

• Note: We did not need to subtract the mean before squaring

returns.

• Why? Squared mean return goes to zero faster than variance

when h → 0, so we can ignore the squared mean term asymp-

totically. To see this, consider the case of i.i.d. returns

E




1/h∑

k=1

r2
t+kh,h



 = h−1E
(
r2
t+h,h

)

= h−1V ar (rt+h,h) + h−1 (μh)2

= V ar (rt+1,1) + hμ2.
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• In the presence of jumps, the realized variance estimator con-

verges to the quadratic variation, which now equals the sum

of the integrated variance and the sum of squared jumps

from [t, t + 1].

• More formally

dpt = μdt + σtdWt + ξtdqt,

where qt is a Poisson process with jump intensity λt.

ξt measures the impact of the jump on prices (jump size).

• The quadratic variation then equals

QV (t, t + 1) =

∫ 1

0
σ2

t+τdτ +
∑

τ∈[0,1]

J2
t+τ = IV (t, t + 1) +

∑

τ∈[0,1]

J2
t+τ .

• You can decompose the quadratic variation into integrated vari-

ance and the jump component using the bipower variation as

introduced in Bandorff-Nielson and Shephard (2004).

• See Andersen and Benzoni (2009) for a review of the techniques

and literature.
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• Although the theory calls for sampling at very high frequencies,

intra-day returns are affected by microstructure noise:

1. Bid/ask “bounce” - transaction prices may jump back and

forth between bid and ask, depending on the sequence

of buy and sell orders arriving in the market, possibly

without having any effect on the mid-point price. This

“volatility” is not the volatility we want to measure. Bid-

ask bounce introduces negative autocorrelation.

2. Price discreteness (depends on tick size).

• Microstructure noise is effectively measurement error, which

leads to a bias in realized volatility.

• The bias gets worse the higher the sampling frequency.

• Illustration from Hansen and Lunde (2006)

• One solution is to sample every 5 minutes, for instance, to

avoid the discreteness.
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2.1.3. Implied volatility

• In a standard Black-Scholes model, the price of a European

option on a stock depends on

– Moneyness (strike price relative to current stock price).

– Maturity of the option.

– Interest rate.

– Volatility of the stock.

• Given that we observe option prices, moneyness, interest rates,

and the maturity of options, we can compute the implied volatility.

• In a Black-Scholes model, each level of moneyness should give

you the same implied volatility number, because it always is

the volatility on the same stock.

• In practice, this is not the case, see for instance Dumas, Flem-

ing, and Whaley (1998)

• This hockey-stick line is called the volatility “smile” or “smirk”
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• Implied vol is higher for out-of-the-money puts (they are ex-

pensive) and for longer-dated options.

• Implied volatility is negatively related to the level of the index

• The VIX is a volatility index, computed using option prices on

the S&P500 index across various strikes.

– See CBOE for details on VIX construction.
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• Investors can trade VIX options and VIX futures on the CBOE

to take bets on aggregate volatility. In addition, there are ETFs

that track VIX.

• Note: As the VIX is computed from option prices, it is the risk-neutral

expectation of volatility (under the Q measure, not under the

true P measure).

2.1.4. Text-based volatility measures: NVIX

• Since we do not have options data far back, we cannot com-

pute the VIX prior to 1986. And although we can, in principle,

compute realized variance for a long sample, the microstruc-

ture issues are more severe going back in time.

• Manela and Moreira (2017) construct a volatility measure us-

ing text data that starts in 1890. They call it news-implied

volatility index or NVIX.

• An additional advantage of using text data is that we may get

a sense what drives the VIX.

• Procedure:

– Use all front-page articles from the WSJ from July 1889

until December 2009.

– Break the sample into three parts

1. 1996-2009 (training sub-sample): Link news data to

implied volatility (VIX).

2. 1986-1995 (test sub-sample): Used for out-of-sample

tests and model fit.
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3. 1889-1986 (predict sub-sample): This is the predic-

tion sample for which the VIX is not available. Note

that this out-of-sample period is very long.

– A month of text is summarized by a vector, xt, of “n-gram

frequencies”

xt,i =
Appearances of n-gram i in month t

Total n-grams in month t

– Predict the VIX, vt, using a linear regression

vt = w0 + w′xt + et.

– We cannot estimate w precisely using OLS as xt is very

high dimensional. There are only 168 observations in the

training sample.

– Manela and Moreira (2017) propose to use “Support Vector

Regressions.” In this case, we choose w to minimize

∑

t∈train

gε(vt − w0 − w′xt) + cw′w,

where gε(e) = max{0, |e|− ε}, that is, a function that ignores

errors smaller than ε and c is a regularization parameter

(much like in ridge regressions). Selects a small number

of n-grams (support vectors) and ignores the rest.
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• The resulting NVIX series
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• Using realized volatility instead of VIX to test whether the pre-

dictive power holds up over the long sample, the results are

quite stable:
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2.2. Variance risk premium

2.2.1. Measuring the VRP at different horizons

• Given the counter-cyclical dynamics of volatility, it is natural

to conjecture that risk-averse investors require compensation

for being exposed to volatility shocks, and to ask how highly

variance risk is priced.

• A direct way to trade variance risk is using variance swaps.

• The payoff of a variance swap at time t with maturity m is

Variance Swap Payoffm
t =

t+m∑

j=t+1

r2
j − V Sm

t ,

where rj is the log return on the index at date j and V Sm
t the

price of the variance swap. A period corresponds to a day.

• Fairly valued variance swaps have prices V Sm
t at origination:

V Sm
t = EQ

t

[
t+m∑

j=t+1

r2
j

]

,

equal to the Q-expectations of future variance (quadratic vari-

ation).

• Variance risk premium is the difference between the P and Q

expectations of future variance.

• The P-expectation of future variance can be constructed using

a GARCH model or high-frequency data. This is a very direct

way to measure the variance risk premium. The only downside
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is that the sample where variance swap prices are available is

fairly short and that the market may be illiquid initially.

• Dew-Becker, Giglio, Le, and Rodriguez (2017) study the returns

of variance swaps.

• They also define the forward price of variance as

Fm
t = V Sm

t − V Sm−1
t .

The m-month variance swap is the market’s risk-neutral ex-

pectation of realized variance m months in the future at the

end of month t. F 0
t = RVt. F 1

t = V S1
t .

• The forward prices of variance swaps
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• Term structure of variance forward prices usually weakly up-

ward sloping. The curve inverts in times of distress, with RV

spiking. In those periods, the market expects the variance to

normalize (go down) in future.

• Return on a variance forward related to slope of forward curve:

Rm
t+1 =

Fm−1
t+1 − Fm

t

Fm
t

=
EQ

t+1[RVt+m] − EQ
t [RVt+m]

EQ
t [RVt+m]

Measures change in expectations about volatility at its matu-

rity.

• Sharpe ratios of variance swap returns across maturities.
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• Negative average returns on variance forwards = investors are

willing to pay a large risk premium to hedge realized volatil-

ity (SR<-1.0). Equivalently, investors who are providing this

insurance earn a large risk premium (SR > 1.0).

• This suggests that the variance risk premium is large for short-

run variance risk.

• However, the variance risk premium declines quickly with ma-

turity.

• Investors do not require compensation for exposure to news

about future expected volatility at horizons beyond 2 months.

They are not willing to pay a risk premium to hedge this risk.

• Put differently, insuring volatility risk at horizons beyond 2

months is free!

• Only the transitory part of realized variance appears to be

priced in the 1996-2014 data.

• This fact poses a big challenge to structural asset pricing mod-

els (see next slide).

• The authors also suggest that their findings imply that aggre-

gate volatility shocks are unlikely to be a major driver of busi-

ness cycles or consumer welfare. More on this in section 4 of

these notes.
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• SR on variance forwards in theoretical AP models

• Two observations:

1. The models cannot replicate the very high Sharpe ratio for

short-maturity variance claims, and the downward slop-

ing Sharpe ratios as maturity increases.

2. The models all rely on persistent state variables, which

leads to non-trivial variance risk premia at longer maturi-

ties, which is not supported empirically.
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2.2.2. Predicting Stock Returns with the VRP

• Bollerslev, Tauchen, and Zhou (2009) study the predictability

of the variance risk premium for future stock market returns.

• It is natural to conjecture that times in which the variance risk

premium is high are times in which the equity risk premium

is also high.

– In a long-run risk model, for example, shocks to volatility

are priced and increase the equity risk premium (when

IES>1 and risk aversion >1).

– When the volatility of volatility is time-varying, the vari-

ance risk premium is time-varying and strongly correlated

with the equity risk premium.

• The variance risk premium is defined as

V RPt = IVt − RVt,

where IVt is the implied variance (=squared VIX) and RVt the

realized variance.

• The implicit assumption here is that

EP
t (RVt+1) ' RVt.

• To construct RVt, they sum 5-minute squared returns during a

month. This gives 22 × 78 = 1, 716 squared returns for a typical

month.

• The sample period is from January 1990 to December 2007.
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• The dynamics of implied variance, realized variance, and the

variance risk premium:
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• Strong predictability for monthly and quarterly market returns,

weaker for annual returns

• Further evidence:

– Bekaert and Hoerova (2014) use various models for the

expectation of realized variance. Continue to find pre-

dictability for returns by the alternative VRP measures.

– International equities: Bollerslev, Marrone, Xu, and Zhou

(2014) ⇒ Global variance risk premium.

– Currency returns: Londono and Zhou (2017).
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2.3. Volatility and the cross-section of expected returns

• Instead of using variance swaps, we can use the cross-section

of stock returns to estimate the price of variance risk, see Ang,

Hodrick, Xing, and Zhang (2006).

• Advantage: Long sample.

• Disadvantages:

1. We do not get the rich term structure implications of vari-

ance swaps.

2. There are many other factors affecting the cross-section of

expected returns besides variance risk.

• Two sorts:

1. Exposure to aggregate volatility shocks.

2. Idiosyncratic risk level.
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• Regression for aggregate volatility

ri
t = β0 + βi

MKTMKTt + βi
ΔV IXΔV IXt + εi

t,

and sort stocks on βi
ΔV IX.

• Stocks that hedge against aggregate volatility shocks earn lower

average returns and alphas (83bps per month 3-FF alpha).

This makes considerable sense.

• Papers studying how aggregate volatility is priced in the cross-

section:

– Bansal, Kiku, Shaliastovich, and Yaron (2014).

– Campbell, Giglio, Polk, and Turley (2018).
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• For idiosyncratic risk, take the residual of the Fama and French

3-factor model:

ri
t = αi + βi

MKTMKTt + βi
SMBSMBt + βi

tHMLt + εi
t,

estimated using daily data. Idiosyncratic risk is measured as
√

var(εi
t).

• Portfolio of stocks with high idiosyncratic risk has lower aver-

age returns, after controlling for exposure to the FF3 factors.

• Effects are large: 1.3% per month 3-factor alpha.

• Effects cannot be explained by exposure to aggregate volatility

risk (double-sorts on aggr. volatility beta and idio. vol. level).

• In standard models, there is no compensation for idiosyncratic

risk.

• In models with frictions, e.g., information frictions, where in-

vestors cannot fully diversify away idiosyncratic risk, one would

expect a positive relationship between idiosyncratic risk and

expected return. Data show the opposite.
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• Ang, Hodrick, Xing, and Zhang (2009) study potential expla-

nations for the U.S. and provide additional international evi-

dence.

• Fama-MacBeth regression of excess returns on lagged idiosyn-

cratic volatility, factor betas, and firm characteristics:
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• Herskovic, Kelly, Lustig and Van Nieuwerburgh (2016) show

that idiosyncratic volatilities of U.S. stocks are synchronized.

• A single factor, the common idiosyncratic volatility or CIV fac-

tor, explains 35% of the time-series variation in firm-level id-

iosyncratic return variance.

• Same is true for volatility of fundamentals, such as sales growth.

• Stocks with high CIV-beta have low average returns (panels A,

B), even after controlling for MV-beta exposure (panels C, D) or

idiosyncratic variance (appendix table A.3, not reported here):
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• CIV exposure captures a new source of systematic risk; paper

shows it has a significantly negative price of risk λCIV < 0.

• CIV factor also helps price size-, BM-, EP-, momentum, and

aggregate volatility beta-sorted portfolios.

• Traded version of the CIV factor has average return very similar

to the estimated λCIV .

• Paper proposes model where firm-level dividend growth has

an idiosyncratic shock component whose variance is common

across firms, the CIV factor.

• Households face idiosyncratic consumption growth risk, due to

incomplete markets. Shocks to household-specific consump-

tion growth have time-varying volatility also driven by the CIV

factor.

• Intuition: some idiosyncratic firm cash-flow risk is passed through

from firms to the households (e.g., via compensation contracts

or layoffs), and households require compensation to bear this

risk.

• Periods of high CIV in firms’ cash flows are periods where risk

sharing is difficult, and the cross-sectional variance of individ-

ual consumption growth increases.
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• Evidence from individual earnings data shows comovement be-

tween dispersion in labor income growth and CIV factor.
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3. Interpreting the Facts

3.1. Consumption-based asset pricing models

• Growing literature tries to understand the dynamics of volatil-

ity and option prices.

• Traditional asset pricing models with interesting variance and

variance risk premium dynamics:

– Long-run risks: Drechsler and Yaron (2011). To match the

dynamics of volatility and the variance risk premium, they

add jumps in consumption, dividends, and the variance

process.

– Variable rare disasters: Gabaix (2012) and Seo and Wachter

(2019).
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3.2. Learning-based models

• Benzoni, Collin-Dufresne, and Goldstein (2011) provide a learning-

based explanation of the change in the implied volatility curve

following the 1987 stock market crash.

• Motivating figure:

• The implied volatility curve was reasonably flat before the crash.

• But the implied volatility curve steepened and remained steep

for the next 20 years.
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• Arrival of a rare jump triggers the updating of agents’ beliefs

about the likelihood of future jumps, which produces a market

crash, and a permanent shift in option prices.

• Similar intuition in Kozlowski, Veldkamp, and Venkateswaran

(2020) to explain the secular stagnation after the 2007-09 Great

Financial Crisis.

– An extreme event was realized that was not yet in the

econometrician’s information set.

– After observing this event, this permanently changed his

beliefs about the distribution of macro outcomes.

– Increase in tail risk. SKEW index uses out-of-the-money

S&P500 options to back out the risk-neutral probability

of a left-tail event. It increases in the GFC and remains

high.
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3.3. Intermediary-based asset pricing models

• Garleanu, Pedersen, and Poteshman (2009) develop an intermediary-

based asset pricing model for option markets.

– Imbalances in dealer inventory matter for option pricing

– They relate “demand pressure” from end users to option

puzzles such as the fact that OTM puts are expensive.

– Model is related to the Vayanos and Vila (2021) model,

which we will discuss next week in context of the term

structure of interest rates.

• Similarly, Adrian and Shin (2010) link balance sheet variables

of dealers to volatility and the variance risk premium.

• Coimbra and Rey (2019) develop a model with intermediaries

that have heterogenous Value-at-Risk constraints.

• Outline of the Garleanu, Pedersen, and Poteshman (2009) model:

– Derivatives are indexed by i = 1, . . . , It with prices pt = (pi
t)i∈It

.

– Two groups investors:

1. “End-users” of options: Demand dt = (di
t)i∈It

.

2. Dealers: Demand qt = (qi
t)i∈It

.

– Options are in zero-net supply; market clearing implies:

dt + qt = 0

– Dealers are competitive and infinitely-lived, risk averse with

CARA preferences over consumption

Et

[
∞∑

v=t

ρv−1− exp(−γcv)

γ

]
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– Modeling strategy: Use the dealer first-order condition to

figure out option prices given market clearing and exoge-

nous demand shocks. That is, compute prices that make

the dealer position (observed in the data later on) optimal.

– Because dealers optimize, standard no-arbitrage relation-

ships such as put-call parity hold.

– Note: If markets are complete, then demand pressure does

not matter because dealers can hedge any risk in broader

asset markets.

– Potential sources of market incompleteness:

1. Discrete-time hedging (see Bertsimas, Kogan, and Lo

(2000) for a precise analysis of the hedging error in

discrete time).

2. Jumps in the underlying.

3. Stochastic-volatility risk.

– See Pan (2002) for a model with stochastic volatility and

jumps, and an analysis of jump risk premia.

– Define the unhedgeable part of price changes as pk
t+1, where

we take out the optimally-hedged stock return.

– Key result:

∂pi
t

∂dj
t

= γ(Rf − 1)Covt(p
i
t+1, p

j
t+1),

that is, the price effect for option i of demand pressure

for option j depends on the covariance of the unhedgeable

parts and the risk aversion of the dealer.
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– Direct implication, own demand pressure is positive

∂pi
t

∂di
t

= γ(Rf − 1)V art(p
i
t+1),

highlighting that price pressure is more pronounced for

options with a large unhedgeable component. Also, when

the dealer is more risk averse (e.g., when its capital posi-

tion is weak), we expect to see more demand pressure.

• Fact #1: Net demand for out-of-the-money index puts is posi-

tive.

• Fact #2: Net demand positively related to dollar expensiveness.
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• Fact #3: Making marking is risky (top panel) and profitable

(bottom panel), about $1 mi per year per market maker. Thus,

dealers are compensated for the substantial risk they take on.

• Fact #4: Regression evidence of demand pressure and the in-

teraction with the dealer’s P&L: effect of demand is stronger

after market-maker losses.
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4. Volatility and the Real Economy

• Bloom (2009) studies the impact of “uncertainty shocks.”

• Motivating figure from before

• Volatility is endogenous, and Bloom (2009) uses indicator func-

tions corresponding to the peaks in the figure above.
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• Bloom (2009) estimates a VAR with monthly data from June

1962 to June 2008.

• The state vector includes

1. The log stock market index.

2. The volatility indicator.

3. The Federal funds rate.

4. The log of average hourly earnings.

5. The log of the consumer price index.

6. Hours.

7. The log of employment.

8. The log of industrial production.

• Logic for the ordering:

– Shocks simultaneously affect asset prices and volatility

(series 1-3), then labor/goods prices (series 4-5), and then

quantities (series 6-8).

– By putting the stock market first, we already control for the

impact of the stock market when tracing out the impact of

volatility shocks.

• Instead of using the level of volatility, Bloom (2009) uses an

indicator variable to only use the exogenous nature of these

events.

• All series have been de-trended using a Hodrick-Prescott filter

(note: the standard HP filter is 2-sided).
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• Key figures

• Both production and employment fall when uncertainty in-

creases, and then bounce back, but overshoot.

• Bloom (2009) develops a model to reconcile these findings.

• Key innovation: Heteroscedastic aggregate demand and pro-

ductivity shocks in a firm-level model.

• Intuitively, fixed costs and partial irreversibilities lead to inac-

tion regions. Higher uncertainty increases the inaction region

and firms temporarily pause their investment and hiring.

• The model replicates the overshooting in the level of employ-

ment (not just hiring to catch up to trend).
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• Bloom (2009) triggered a large literature trying to understand

how to measure uncertainty, what drives uncertainty, and how

it affects the real economy.

• One prominent example is Jurado, Ludvigson, and Ng (2015).

• Instead of using stock market volatility, they measure macro

uncertainty using a large number of macro-economic time se-

ries.

• Consider Ny macro series, Yt = (y1t, . . . , yNyt)
′.

• Define uncertainty for series j, h periods ahead, as

U y
jt(h) =

√

E
[
(yj,t+h − Et [yj,t+h])

2
]
,

where this definition uses the conditional expectation of yj,t+h.

• The aggregate uncertainty measure at time t, h periods ahead,

is given by

U y
t (h) =

Ny∑

j=1

wjU
y
jt(h) →p Ew

[
U y

jt(h)
]
.

• High uncertainty means economy has become less predictable.

• Measuring uncertainty requires a model for conditional expec-

tations and a stochastic volatility model for the innovations.
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• Measuring uncertainty

– To proxy for the information available to agents, estimate

a factor model for a large number (132) of macro-economic

time series, Xt, i.e.,

Xit = ΛF
i
′Ft + eX

it ,

where dim(F ) << dim(X).

– To forecast yj,t+1, they use lags of yjt, the factors, and ad-

ditional variables, Wt

yj,t+1 = φy
j (L)yjt + γF

j (L)Ft + γW
j (L)Wt + vy

j,t+1.

– Stack all factors together (i.e., yt, Ft, and Wt) and estimate

a VAR.

– Estimate a stochastic volatility model for the residuals,

e.g.,

log(σF
t )2 = αF + βF log(σF

t−1)
2 + τFηF

t , ηF
t ∼ N(0, 1), i.i.d.
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• Macro uncertainty versus stock market uncertainty

• Many sharp spikes in stock market volatility do not appear in

macro uncertainty. E.g., 1987 was a large spike in stock mar-

ket volatility but nothing happened macro volatility.
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• Re-estimate the same VAR as before, using macro uncertainty

• h measures the uncertainty in months ahead (i.e, one month,

one quarter, and one year).

• Important differences:

– Macro uncertainty has larger and more persistent effects

than stock market volatility.

– No evidence of overshooting.
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– Baker, Bloom, and Davis (2016) create an economic policy

uncertainty index from news stories (10 large newspapers

in the U.S.), federal tax policies that are set to expire in the

future, and Survey of Professional Forecasters’ dispersion

in forecasts about inflation and government spending.

– Available for multiple countries on this web site.

– Used to explain stock market volatility, predict stock re-

turns, predict macro-economic aggregates.
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