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1. Basic structure of the notes

e High-level summary of theoretical frameworks to interpret em-
pirical facts.

e Per asset class, we will discuss:
1. Key empirical facts in terms of prices (unconditional and
conditional risk premia) and asset ownership.

2. Interpret the facts using the theoretical frameworks.

3. Facts and theories linking financial markets and the real
economy.

4. Active areas of research and some potentially interesting
directions for future research.

e The notes cover the following asset classes:

1. Equities (weeks 1-5).
— Discount rates and the term structure of risk (week 1)
- The Cross-section and the factor zoo (week 2)
- Intermediary-based Asset Pricing (week 3)
- Production-based asset pricing (week 4)

- Demand-based asset pricing (week 5)
2. Mutual funds and hedge funds (week 6).
3. Volatility (week 7).
4. Government bonds (week 8).
5. Corporate bonds and CDS (week 9).
6. Currencies and international finance (week 10).
7. Commodities (week 11).
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. Real estate (week 12).



2. Volatility Facts

2.1. Measuring Variance

e Ways to measure or estimate variance:

1. Parametric models (e.g., GARCH).
2. Realized variance using high-frequency data.
3. Implied volatility using options.
4. Text-based variance measures.
e Before high-frequency data were available, the conditional vari-

ance of returns, o? = V;(R;;1), was measured via GARCH-style
models.

e High-frequency data makes variance effectively observable, but
GARCH-style models are still useful for predicting future volatil-

ity.



2.1.1. Parametric models
e GARCH(p,q) model (Bollerslev, 1986)
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where Eta1 ™~ N (0, 1), lld, Qs Z 0, ﬁz Z 0, w Z 0.

e To capture the persistence of volatility with the original ARCH(q)
model (Engle, 1982), we need many lags.

e The same logic as ARMA processes in time-series economet-
rics.

e By now, there are lots of extensions of such models, see Boller-
slev [2008) for an overview.

e There are also many multivariate extensions modeling the con-
ditional covariance matrix of returns (BEKK, VECH, DCC, ...).

e GARCH(1,1) is a commonly-used specification

of = w+ an; + fo;_.

e Note that

of =w+(a+B)u =B (0 — 0/ 4),

and after adding 77, ,on both sides

M =w+ (a+ B —Bnf — i) + (nEa — o}),
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it shows that a GARCH(1,1) can be viewed as an ARMA(1,1) for
n?.,, where 77, — o7 are the innovations.

e Shocks to 7 — o7, feed into n? , in the next period at rate § < 1
and then persist into the following periods at rate a + g (close
to 1).

e This means that a + § governs the persistence of conditional
variance in the GARCH(1,1) model.

e Also, we need o + [ < 1 to ensure covariance stationarity.

e Applying the basic ARMA(1,1) logic to see that the uncondi-
tional mean of the conditional variance equals

w

o* = E(o}) = E(n}) = F—

e We can use GARCH models for forecasting.

e One-period forecast

e Two-period forecast

E; () = w(a+P)of

e k—period forecast

Ei () = 0% + (a4 8)"" (07 — %)



Estimation is typically done via Maximum Likelihood

Denote 0 = (i, a, f,w),

rev | of =N (p,07).

The conditional density is
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The conditional likelihood of the data
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¢ We maximize this likelihood over 6.

e The likelihood is conditional on o3.

- It is common to set o3 equal to the unconditional variance.

- Asymptotically, the impact of the pre-sample values disap-
pears, but it matters in finite samples in particular when
a + [ is close to 1.

e The asymptotic covariance matrix of the ML estimator is cal-
culated (as always) based on the second derivative of the log
likelihood w.r.t. the parameters (inverse of Hessian matrix):

Var(d) = (E [%%D_l .



2.1.2. Realized volatility

e Realized volatility uses high-frequency data to measure vari-
ance.

e Simple example: Suppose we sample returns in n intervals of
length h, so that 7' = nh.

e Assume that log prices, p; (with dividends reinvested), are a
geometric Brownian motion with constant volatility

dp; = pdt + odW;,

where W, is a standard Brownian motion.

e We have for the h-period return:

Tithh = Dirh — Dt ~ N (Mha 02h) 5
for any h > 0.

e The standard maximum likelihood estimators of i and ¢? are
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e If we compute the asymptotic distribution of the estimators:

VT (i—p) —* N(0,0%),
\/5(62—02) —4 N(0,20%).

e Key insight: The asymptotic variance of 52 only depends on n
and not on 7.

e If we fix T and sample the data more frequently, then n — oo,
and we can get an arbitrarily precise estimator of o2, no matter
how small 7.

e In contrast, to get a more precise estimator of ; we need to
increase 7.

e Logic explained further in Merton (1980).

e Now suppose volatility is time-varying and log prices are a
semi-martingale
dpt = ,&dt + Utth,

where o, is a predictable process and square integrable,

t
E</ agds) < 00.
0

e Then, with ;.1 = p;11 — pr, and conditioning on the path of o,
we have

1
Teer [ {0tsrtrepy ~ N <M/o 0t2+rd7> ’

1 . . :
where [; o7, .dr is referred to as the integrated variance.


http://www.sciencedirect.com/science/article/pii/0304405X80900070

In the absence of jumps, the quadratic variation equals the
integrated variance. In this case, it holds:

1/h )
Z Tt2+kh7h —QV(t,t+1)=1V(tt+1) = / Jt2+Td7',
k=1 0

as h — 0. Applied in finance by Andersen and Bollerslev (1998).

Hence, with frequent sampling, we can —asymptotically—
measure integrated variance without error from realized vari-
ance by summing squared returns.

In practice, this means that we estimate realized volatility, say,
every day, using data sampled intra-daily. We then treat the
daily realized volatilities as an observed random variable for
which we can use standard ARMA machinery for forecasting.

Note: We did not need to subtract the mean before squaring
returns.

Why? Squared mean return goes to zero faster than variance
when h — 0, so we can ignore the squared mean term asymp-
totically. To see this, consider the case of i.i.d. returns

1/h

2 | 2
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In the presence of jumps, the realized variance estimator con-
verges to the quadratic variation, which now equals the sum
of the integrated variance and the sum of squared jumps
from [t,t + 1].

More formally
dp; = pdt + o, dW; + &dgy,

where ¢ is a Poisson process with jump intensity \;.
¢ measures the impact of the jump on prices (jump size).

The quadratic variation then equals

1
QV(t,t+1):/ ot dr+ Y T =TVt 1)+ > P
0

7€[0,1] T€[0,1]

You can decompose the quadratic variation into integrated vari-
ance and the jump component using the bipower variation as
introduced in Bandorft-Nielson and Shephard (2004).

See Andersen and Benzoni (2009) for a review of the techniques
and literature.
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http://academic.oup.com/jfec/article/2/1/1/960705/Power-and-Bipower-Variation-with-Stochastic

e Although the theory calls for sampling at very high frequencies,
intra-day returns are affected by microstructure noise:

1. Bid/ask “bounce” - transaction prices may jump back and
forth between bid and ask, depending on the sequence
of buy and sell orders arriving in the market, possibly
without having any effect on the mid-point price. This
“volatility” is not the volatility we want to measure. Bid-
ask bounce introduces negative autocorrelation.

2. Price discreteness (depends on tick size).

e Microstructure noise is effectively measurement error, which
leads to a bias in realized volatility.

e The bias gets worse the higher the sampling frequency.

e [llustration from Hansen and Lunde (2006)
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Figure 2. Bid and Ask Quotes (defined by the shaded area) and Actual Transaction Prices (@) Over Three 20-Minute Subperiods on April 24,
2004 for AA.

e One solution is to sample every 5 minutes, for instance, to
avoid the discreteness.
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http://www.jstor.org/stable/pdf/27638860.pdf?_=1460619710008

2.1.3. Implied volatility

e In a standard Black-Scholes model, the price of a European
option on a stock depends on

— Moneyness (strike price relative to current stock price).
— Maturity of the option.

— Interest rate.

— Volatility of the stock.

e Given that we observe option prices, moneyness, interest rates,
and the maturity of options, we can compute the implied volatility.

¢ In a Black-Scholes model, each level of moneyness should give

you the same implied volatility number, because it always is
the volatility on the same stock.

e In practice, this is not the case, see for instance Dumas, Flem-

n
ing, and Whaley (1998)
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Figure 1. Black-Scholes implied volatilities on April 1, 1992. Implied volatilities are com-
puted from S&P 500 index call option prices for the April, May and June 1992 option expira-
tions. The lower line of each pair is based on the option’s bid price, and the upper line is based
on the ask. Time-adjusted moneyness is defined as [X/(S — PVD) — 1]/@'?, where S is the index
level, PVD is the present value of the dividends paid during the option’s life, X is the option’s
exercise price, and T is its number of days to expiration.

e This hockey-stick line is called the volatility “smile” or “smirk”
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e Implied vol is higher for out-of-the-money puts (they are ex-
pensive) and for longer-dated options.

e Implied volatility is negatively related to the level of the index

Index Volatility (%)
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Figure 2. S&P 500 index level and Black-Scholes implied volatility each Wednesday
during the period of June 1988 through December 1993.

e The VIX is a volatility index, computed using option prices on
the S&P500 index across various strikes.

- See CBOE for details on VIX construction.

VIX Close

1/2/2004 1/2/2005 1/2/2006 1/2/2007 1/2/2008 1/2/2009 1/2/2010 1/2/2011 1/2/2012 1/2/2013 1/2/2014 1/2/2015 1/2/2016 1/2/2017 1/2/2018
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http://www.cboe.com/micro/vix/vixwhite.pdf

Investors can trade VIX options and VIX futures on the CBOE
to take bets on aggregate volatility. In addition, there are ETFs
that track VIX.

Note: As the VIX is computed from option prices, it is the risk-neutral

expectation of volatility (under the Q measure, not under the
true P measure).

2.1.4. Text-based volatility measures: NVIX

Since we do not have options data far back, we cannot com-
pute the VIX prior to 1986. And although we can, in principle,
compute realized variance for a long sample, the microstruc-
ture issues are more severe going back in time.

Manela and Moreira (2017) construct a volatility measure us-
ing text data that starts in 1890. They call it news-implied
volatility index or NVIX.

An additional advantage of using text data is that we may get
a sense what drives the VIX.

Procedure:
— Use all front-page articles from the WSJ from July 1889
until December 2009.

— Break the sample into three parts

1. 1996-2009 (training sub-sample): Link news data to
implied volatility (VIX).

2. 1986-1995 (test sub-sample): Used for out-of-sample
tests and model fit.

14


http://www.sciencedirect.com/science/article/pii/S0304405X16301751

3. 1889-1986 (predict sub-sample): This is the predic-
tion sample for which the VIX is not available. Note
that this out-of-sample period is very long.

— A month of text is summarized by a vector, x;, of “n-gram
frequencies”

__ Appearances of n-gram ¢ in month ¢

b Total n-grams in month ¢

— Predict the VIX, v, using a linear regression
v = wy + W'z + ey

- We cannot estimate w precisely using OLS as z; is very

high dimensional. There are only 168 observations in the
training sample.

— Manela and Moreira (2017) propose to use “Support Vector
Regressions.” In this case, we choose w to minimize

Z ge(vy — wg — w'zy) + cw'w,
tetrain
where ¢.(e) = max{0, |e| — ¢}, that is, a function that ignores
errors smaller than ¢ and c is a regularization parameter

(much like in ridge regressions). Selects a small number
of n-grams (support vectors) and ignores the rest.
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e The resulting NVIX series

Figure 1: News-Implied Volatility 1890-2009
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Solid line is end-of-month CBOE volatility implied by optione VIX;. Dots are news implied volatility
(NVIX) VIX; = wyg + W - X¢, where x;; are appearances of n-gram ¢ in month ¢ scaled by total month ¢
n-grams, and W is estimated with a support vector regression. The train subsample, 1996 to 2009, is used
to estimate the dependency between news data and implied volatility. The test subsample, 1986 to 1995, is
used for out-of-sample tests of model fit. The predict subsample includes all earlier observations for which
options data, and hence VIX is - not available. Light-colored triangles indicate a nonparametric bootstrap
95% confidence interval around VI X using 1000 randomizations. These show the sensitivity of the predicted
values to randomizations of the train subsample.
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Figure 2: News-Implied Volatility Peaks by Decade
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We describe NVIX peak monthe each decade by reading the front page articles of The Wall Street Journal

and cross-referencing with secondary sources when needed. Many of the market crashes are described in
Mishkin and White (2002). See also Noyes (1909) and Shiller and Feltus (1989).

e Using realized volatility instead of VIX to test whether the pre-
dictive power holds up over the long sample, the results are
quite stable:

Table 2
Out-of-sample realized volatility prediction using news.

Reported are model fit statistics repeating the estimation procedure over the same train subsample as before, only
replacing implied volatility (VIX) with realized volatility as the dependent variable of the Support Vector Regression
(SVR) Eq. (2). The train subsample, 1996-2009, is used to estimate the dependency between monthly news data and
realized volatility. The test subsample, 1986 to 1995, is used for out-of-sample tests of model fit. The predict subsample
includes all earlier observations for which options data and, hence, VIX are not available. RMSE SVR is root mean square
error of the SVR. R? SVR is one less the prediction error’s variance as a fraction of actual realized volatility's variance.
RMSE Reg and R? Reg are estimated from a subsequent univariate Ordinary Least Squares (OLS) regression of actual
realized volatility on realized volatility implied by news.

Subsample RMSE SVR R? SVR RMSE Reg R? Reg Correlation Observations
Train 3.38 90.69 2.62 92.70 96.28 168

Test 9.61 20.24 9.08 20.35 4511 119

Predict 10.68 13.58 8.50 15.99 39.98 1150
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2.2. Variance risk premium

2.2.1. Measuring the VRP at different horizons

Given the counter-cyclical dynamics of volatility, it is natural
to conjecture that risk-averse investors require compensation
for being exposed to volatility shocks, and to ask how highly
variance risk is priced.

A direct way to trade variance risk is using variance swaps.

The payoff of a variance swap at time ¢ with maturity m is

t+m
Variance Swap Payoff]" = Z rs = VS,

j=t+1

where r; is the log return on the index at date j and V5" the
price of the variance swap. A period corresponds to a day.

Fairly valued variance swaps have prices V S/ at origination:
t+m
VSm = B2 ['Z TJQ] :
=t+1

equal to the Q-expectations of future variance (quadratic vari-
ation).

Variance risk premium is the difference between the P and Q
expectations of future variance.

The P-expectation of future variance can be constructed using
a GARCH model or high-frequency data. This is a very direct
way to measure the variance risk premium. The only downside
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is that the sample where variance swap prices are available is
fairly short and that the market may be illiquid initially.

e Dew-Becker, Giglio, LLe, and Rodriguez (2017) study the returns

of variance swaps.

e They also define the forward price of variance as
Fr=vsr—vsrt

The m-month variance swap is the market’s risk-neutral ex-
pectation of realized variance m months in the future at the
end of month t. F) = RV,. F} =VS}.

e The forward prices of variance swaps
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Fig. 1. Time series of forward variance claim prices. The figure shows the time series of forward variance claim prices of different maturities. For readability,
cach line plots the prices in annualized volatility terms, 100 x /T2 x ., for a different n. The top panel plots forward variance claim prices for maturities
of one month, three months, and one year. The bottom panel plots forward variance claim prices for maturities of 1 year, 5 years and 10 years. Both panels
also plot annualized realized volatility, 100 x /T2 x FC.
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e Term structure of variance forward prices usually weakly up-
ward sloping. The curve inverts in times of distress, with RV
spiking. In those periods, the market expects the variance to
normalize (go down) in future.

e Return on a variance forward related to slope of forward curve:

o MY E' ER[RViw] — EZ[RVigw)
1 — m -
" F} EC[RViyn)]

Measures change in expectations about volatility at its matu-
rity.

e Sharpe ratios of variance swap returns across maturities.

Sharpe Ratio (annualized), 1996:01 —2013:10

| | | | | | | | | |
6 7 8 9 10 11 12
Maturity (months)

[
[
=
h

Fig. 5. Annualized Sharpe ratios for forward variance claims. The figure shows the annualized Sharpe ratio for the forward variance claims. The returns are
calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted lines represent 95% confidence intervals. All tests
for the difference in Sharpe ratio between the one-month variance swap and any other maturity confirm that they are statistically different with a p-value
of 0.03 (for the second month) and < 0.01 (for all other maturities). The sample used is 1996-2013.
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Negative average returns on variance forwards = investors are
willing to pay a large risk premium to hedge realized volatil-
ity (SR<-1.0). Equivalently, investors who are providing this
insurance earn a large risk premium (SR > 1.0).

This suggests that the variance risk premium is large for short-
run variance risk.

However, the variance risk premium declines quickly with ma-
turity.

Investors do not require compensation for exposure to news
about future expected volatility at horizons beyond 2 months.
They are not willing to pay a risk premium to hedge this risk.

Put differently, insuring volatility risk at horizons beyond 2
months is free!

Only the transitory part of realized variance appears to be
priced in the 1996-2014 data.

This fact poses a big challenge to structural asset pricing mod-
els (see next slide).

The authors also suggest that their findings imply that aggre-
gate volatility shocks are unlikely to be a major driver of busi-
ness cycles or consumer welfare. More on this in section 4 of
these notes.
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e SR on variance forwards in theoretical AP models
Annualized Sharpc ratios
0.6
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e Two observations:

1. The models cannot replicate the very high Sharpe ratio for
short-maturity variance claims, and the downward slop-
ing Sharpe ratios as maturity increases.

2. The models all rely on persistent state variables, which
leads to non-trivial variance risk premia at longer maturi-
ties, which is not supported empirically.
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2.2.2. Predicting Stock Returns with the VRP
e Bollerslev, Tauchen, and Zhou (2009) study the predictability
of the variance risk premium for future stock market returns.

e It is natural to conjecture that times in which the variance risk
premium is high are times in which the equity risk premium
is also high.

- In a long-run risk model, for example, shocks to volatility
are priced and increase the equity risk premium (when
IES>1 and risk aversion >1).

— When the volatility of volatility is time-varying, the vari-
ance risk premium is time-varying and strongly correlated
with the equity risk premium.

e The variance risk premium is defined as
VRP, =1V, — RV,

where [V; is the implied variance (=squared VIX) and RV; the
realized variance.

e The implicit assumption here is that

EtP(RV;f+1) ~ RV;.

e To construct RV, they sum 5-minute squared returns during a
month. This gives 22 x 78 = 1,716 squared returns for a typical
month.

e The sample period is from January 1990 to December 2007.
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e The dynamics of implied variance, realized variance, and the
variance risk premium:

S&P 500 implied variance
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Figure 2

Implied and realized variances and variance risk premium

This figure plots the implied variance (the top panel), the realized variance (the middle panel), and the difference
(the bottom panel) for the S&P 500 market index from January 1990 to December 2007. The shaded areas
represent NBER recessions.
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e Strong predictability for monthly and quarterly market returns,

weaker for annual returns

Table 4
Quarterly return regressions
Simple Multiple
Constant —2.08 0.24 6.60 92.41 73.35 20.63 7.39 6.92 5.53 101.89 —4.12 85.03 100.06 98.21
(—0.56) (0.06) (1.60) (2.17) (181 (1.32) (1.24) (2.18) (1.54) (2400 (=100 (L6T) (1.93) (2.18)
IV, — RV, 0.47 0.58 0.51 0.59 0.70
(2.86) (3.43) (3.02) (3.38) (4.01)
v, 0.19
(1.41)
RV, 0.00
(0.00)
logl( P, /E,) —2.28 —2.82 =211 -7 —2.95
(—=1.97) (—2.42) (—1.54)  (—198)
logl( P, /D) —1.42
(—1.62)
DFSP; —1.39
(—0.90)
TMSP; —0.46 4.08
(—0.17) (1.42)
RREL, 327 6.30
(0.88) (1.56)
CAY, 323 3352 1.08 0.74
(1.78) (1.99) (0.53) (0.37)
Adj. R? (%) 6.82 249 —0.47 6.35 4.19 118 —0.43 0.43 4.13 16.76 11.87 7.21 17.42 19.74

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly observations. Robust £-statistics accounting for the overlap
following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Tables 1 and 3.

Table 5
Annual return regressions
Simple Multiple
Constant 4.62 7.62 0.49 T8.47 79.83 15.59 537 7.29 542 2100 1.91 52.85 35.11 7404
(1.50) (2.44) (3.200 (2.05) 217 (1.13) (0.90) (2.33) (147 (2.15) (0.33) (1.03) (1.0B) (1.88)
IV, — RV, 0.12 0.19 0.18 0.20 0.33
(1.00) (1.68) (1.51) (L.74) (2.96)
v, —0.02
(—0.20
RV, —0.17
(—1.200
log(P./E,) —1.90 —2.06 —1.24 —1.40 —2.14
(—1.800 (—2.00) (—091)  (—L03) (-1.92)
log(P, /D) —1.55
(—1.92)
DFSP, —0.87
(—0.64)
TMSP, 0.88 4.53
(0.35) (1.69)
RREL, 4.09 6.29
(1.11) (1.75)
CAY, 348 362 213 212
(1.99) (2.12) (0.99) (0.99)
Adj. R? (%) 1.23 —0.37 2.89 16.34 19.53 1.79 0.01 454 18.15 20.12 2118 21.46 25.52 3258

The sample period extends from January 1990 to December 2007. All of the regressions are based on overlapping monthly observations. Robust £-statistics accounting for the overlap
following Hodrick (1992) are reported in parentheses. All variable definitions are identical to Tables 1 and 3.

e Further evidence:

- Bekaert and

Hoerova (2014) use various models for the

expectation of realized variance. Continue to find pre-

dictability for returns by the alternative VRP measures.

- International equities: Bollerslev, Marrone, Xi1, and Zhou

(2014) = Global variance risk premium.

Londono and Zhot (2017)

— Currency returns:
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2.3. Volatility and the cross-section of expected returns

e Instead of using variance swaps, we can use the cross-section
of stock returns to estimate the price of variance risk, see Ang,
Hodrick, Xing, and Zhang (2006).

e Advantage: Long sample.
e Disadvantages:

1. We do not get the rich term structure implications of vari-
ance swaps.

2. There are many other factors affecting the cross-section of
expected returns besides variance risk.

e Two sorts:

1. Exposure to aggregate volatility shocks.

2. Idiosyncratic risk level.
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e Regression for aggregate volatility
rt = Bo+ BuxrMET; + Bavix AVIX; + ¢,

and sort stocks on B4y

Table I
Portfolios Sorted by Exposure to Aggregate Volatility Shocks

We form value-weighted quintile portfolios every month by regressing excess individual stock returns on AVIX, controlling for the MKT factor as
in equation (3), using daily data over the previous month. Stocks are sorted into quintiles based on the coefficient fayry from lowest (quintile 1) to
highest (quintile 5). The statistics in the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to total, not excess,
simple returns. Size reports the average log market capitalization for firms within the portfolio and B/M reports the average book-to-market ratio.
The row “5-1" refers to the difference in monthly returns between portfolio 5 and portfolio 1. The Alpha columns report Jensen's alpha with respect
to the CAPM or the Fama-French (1993) three-factor model. The pre-formation betas refer to the value-weighted 8 4y or #pyy within each quintile
portfolio at the start of the month. We report the pre-formation 8 avix and Spvix averaged across the whole sample. The second to last column reports
the favix loading computed over the next month with daily data. The column reports the next month £svix loadings averaged across months. The
last column reports ex post Spypy factor loadings over the whole sample, where FVIX is the factor mimicking aggregate volatility risk. To correspond
with the Fama—French alphas, we compute the ex post betas by running a four-factor regression with the three Fama—French factors together with
the FVIX factor that mimics aggregate volatility risk, following the regression in equation (6). The row labeled “Joint test p-value” reports a Gibbons,
Ross and Shanken (1989) test for the alphas equal to zero, and a robust joint test that the factor loadings are equal to zero. Robust Newey—West
(1987) t-statistics are reported in square brackets. The sample period is from January 1986 to December 2000.

Factor Loadings

Next Month Full Sample
Std. % Mkt CAPM FF-3 Pre-Formation  Pre-Formation  Post-Formation  Post-Formation
Rank  Mean Dev. Share Size B/M  Alpha Alpha Bavix Brvix Bavix Brvix
1 1.64 5.53 9.4% 3.70  0.89 0.27 0.30 —2.09 —2.00 —0.033 —5.06
[1.66] [1.77] [—4.06]
2 1.39 4.43 28.7% 477 0.73 0.18 0.09 —0.46 —0.42 —0.014 —2.72
[1.82] [1.18] [—2.64]
3 1.36 4.40 30.4% 477 076 0.13 0.08 0.03 0.08 0.005 —1.55
[1.32] [1.00] [—2.86]
4 1.21 4.79 24.0% 476  0.73 —0.08 —0.06 0.54 0.62 0.015 3.62
[-0.87] [-0.65] [4.53]
5 0.60 6.55 T7.4% 3.73  0.89 —0.88 —0.53 2.18 2.31 0.018 8.07
[-3.42] [-2.88] [5.32]
5-1 —1.04 —-1.15 —0.83
[—3.90] [-3.54] [-2.93]
Joint test p-value 0.01 0.03 0.00

e Stocks that hedge against aggregate volatility shocks earn lower
average returns and alphas (83bps per month 3-FF alpha).
This makes considerable sense.

e Papers studying how aggregate volatility is priced in the cross-
section:

and Tarley (2018).

s—CL .
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e Foridiosyncratic risk, take the residual of the Fama and French
3-factor model:

Ti = Oéi + 5}\4KTMKT75 + ﬁfS‘MBSMBt + 5;HML75 T 617

estimated using daily data. Idiosyncratic risk is measured as

Vwvar(€).

Panel B: Portfolios Sorted by Idiosyncratic Volatility Relative to FF-3

1 1.04 3.83 53.5% 4.86 0.85 0.11 0.04
[1.57] [0.99]

2 1.16 4.74 27.4% 4.72 0.80 0.11 0.09
[1.98] [1.51]

3 1.20 5.85 11.9% 4.07 0.82 0.04 0.08
[0.37] [1.04]

4 0.87 7.13 5.2% 3.42 0.87 —0.38 —0.32
[—2.32] [—3.15]

5 —0.02 8.16 1.9% 2.52 1.10 —1.27 —1.27
[—5.09] [—7.68]

5-1 —1.06 —1.38 —-1.31
[—3.10] [—4.56] [—7.00]

e Portfolio of stocks with high idiosyncratic risk has lower aver-
age returns, after controlling for exposure to the FF3 factors.

e Effects are large: 1.3% per month 3-factor alpha.

e Effects cannot be explained by exposure to aggregate volatility
risk (double-sorts on aggr. volatility beta and idio. vol. level).

¢ In standard models, there is no compensation for idiosyncratic
risk.

e In models with frictions, e.g., information frictions, where in-
vestors cannot fully diversify away idiosyncratic risk, one would
expect a positive relationship between idiosyncratic risk and
expected return. Data show the opposite.
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e Fama-MacBeth regression of excess returns on lagged idiosyn-
cratic volatility, factor betas, and firm characteristics:

Table 2
Idiosyncratic volatility and expected returns in G7 countries

Canada France Germany Italy Japan UK. us.
Panel A: USD-denominated returns
Constant 1723 0.602 0.753 0.425 0.948 0.480 1.746
[3.68] [113] [1.87] [0.76] [1.25] [1.03] [3.83]
W-FF idiosyncratic volatility -1.224 —1.439 —2.003 -1.572 —1.955 —-0.871 —2.014
[-2.46] [-2.14] [-3.85] [-2.10] [-5.18] [-2.54] [-6.67]
B(MKT™) 0.344 0.059 0.277 -0.083 0.323 0.178 0.376
[2.20] [0.44] [1.93] [-0.32] [312] [1.46] [4.52]
BISMB™W) 0.009 0.015 —-0.083 0.116 0.050 0.032 —-0.049
[0.12] [017] [-0.82] [0.56] [0.76] [0.42] [-1.19]
BHMLY) —-0.070 —0.069 0.076 -0.221 —-0.025 -0.077 —-0.051
[-0.95] [-0.94] [1.00] [-1.98] [-0.35] [-1.30] [-1.69]
Size -0.253 —-0.067 —-0.044 -0.031 -0.132 —-0.058 -0.157
[-4.81] [-1.08] [-1.09] [-0.47] [-1.72] [-1.16] [-3.14]
Book-to-market 0.369 0.569 0.176 0.239 0.550 0.365 0.282
[3.68] [4.59] [1.35] [1.48] [3.84] [4.46] [3.87]
Lagged return 0.014 0.001 0.003 0.001 -0.011 0.012 —-0.001
[3.57] [0.10] [1.01] [0.15] [-2.85] [4.07] [0.28]
Adjusted R? 0.118 0.108 0.114 0.147 0124 0.078 0.046

Percentiles of W-FF idiosyncratic volatility
25th Percentile 208 214 16.3 215 231 139 25.0
75th Percentile 46.0 39.2 348 384 39.6 313 61.1

Economic effect of moving from the 25th to the 75th W-FF idiosyncratic volatility percentiles
25% — 75% -0.31% —-0.26% -0.37% -027% -0.32% —0.15% —0.73%

Panel B: Local-currency-denominated returns

Constant 1.730 0.319 0.554 0.653 0.657 0.513
[3.70] [0.56] [1.34] [1.10] [0.94] [1.11]
L-FF idiosyncratic volatility ~1332 -1.057 ~1.769 ~1.865 ~2.035 -0934
[-2.59] [-1.64] [-3.38] [-2.76] [-5.89] [-2.63]
BMKT™) 0.422 0.133 0.413 0.014 0.999 0.525
[2.64] [0.71] [2.13] [0.05] [5.76] [3.59]
BSMBW) 0123 —0.044 0.037 ~0.011 ~0.016 ~0.048
[1.30] [—0.45] [0.37] [-0.07] [-0.15] [—0.54]
BHMLY) ~0.077 0.114 0.178 ~0126 0.012 ~0.022
[-0.82] [1.31] [2.10] [-111] [0.10] [-0.38]
Size ~0.254 ~0.041 ~0.039 ~0.080 ~0.143 ~0.090
[-4.84] [-0.65] [-0.95] [-1.19] [-2.01] [-1.72]
Book-to-market 0.406 0.571 0.147 0.253 0.552 0.321
[3.68] [4.74] [1.03] [1.77] [3.94] [4.04]
Lagged return 0.015 0.001 0.001 0.001 —0.01 0.012
[3.69] [0.29] [0.42] [0.16] [-2.90] [4.09]
Adjusted R? 0.110 0.107 0.115 0.144 0.131 0.073

The table reports Fama-MacBeth (1973) regressions (Eq. (4)) for the individual G7 countries. We regress monthly excess firm returns on a constant;
idiosyncratic volatility over the past month with respect to the W-FF model in Eq. (3); contemporaneous factor loadings, /:’(MKTWJ, /:’(SMBWJ, and /:’(HMLWJ
with respect to the W-FF model; and firm characteristics at the beginning of the month. “Size” is the log market capitalization of the firm at the beginning
of the month, “‘Book-to-market” is the book-to-market ratio available six months prior, and “Lagged return” is the firm return over the previous six
months. We report the robust t-statistics in square brackets below each coefficient. The row “Adjusted R*” reports the average of the cross-sectional
adjusted R*'s. Each cross-sectional regression is run separately for each country using U.S. dollar-denominated firm excess returns in Panel A and local-
currency-denominated firm excess returns in Panel B. In Panel A, we also report the 25th and 75th percentiles of each country’s W-FF idiosyncratic
volatility and compute the economic effect of moving from the 25th to the 75th percentile. For example, for Canada, a move from the 25th to the 75th
percentile of W-FF idiosyncratic volatility would result in a decrease in a stock’s expected return of |—1.224| x (0460 — 0.208) = 0.31% per month. The
sample period is from January 1980 to December 2003 for all countries.
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Nienwerburgh

(2016) show

e A single factor, the common idiosyncratic volatility or CIV fac-
tor, explains 35% of the time-series variation in firm-level id-
iosyncratic return variance.

e Same is true for volatility of fundamentals, such as sales growth.

e Stocks with high CIV-beta have low average returns (panels A,
B), even after controlling for MV-beta exposure (panels C, D) or
idiosyncratic variance (appendix table A.3, not reported here):

Table 2
Portfolios formed on common idiosyncratic volatility (CIV)-beta.

The table reports average excess returns and alphas in annual percentages for portfolios sorted on the basis of monthly CIV-beta for the 1963-2010
sample. Panel A reports equally weighted average excess returns and alphas in one-way sorts using all Center for Research in Security Prices (CRSP) stocks.
Panel B reports value-weighted averages in one-way sorts. Panel C shows equally weighted one-way sorts on CIV-beta that control for market variance
(MV)-beta. Panel D shows equally weighted average excess returns in sequential two-way sorts on CIV-beta and MV-beta.

CIV beta

1 (low) 2 3 4 5 (high) 5-1 5-1)
Panel A: One-way sorts on CIV-beta
E[R)—1¢ 12.08 10.88 9.96 8.70 6.68 -5.41 —-3.94
acapm 5.38 5.07 455 3.24 0.61 —-4.77 —3.52
arr 1.06 1.07 0.78 -0.07 -223 -3.29 —2.50
Panel B: One-way sorts on CIV-beta (value-weighted)
E[R)—1¢ 9.1 7.04 577 5.82 3.87 —5.53 -3.15
acapm 2.84 1.34 0.49 0.74 -1.72 —4.56 —2.65
arr 1.58 0.58 0.26 0.78 -1.59 —-3.17 -1.84

Panel C: One-way sorts on CIV-beta controlling for MV-beta

E[R] -1y 11.71 11.08 9.57 8.57 7.36 —4.35 -3.10
acapm 4.87 5.04 3.99 3.21 1.74 -3.14 —2.38
apF 0.66 1.22 0.31 —-019 —1.39 —-2.05 —1.64

Panel D: Two-way sorts on CIV-beta and MV-beta

1 (low) 10.04 10.36 8.48 766 6.16 —3.88 —2.52
2 12.28 10.08 9.24 9.54 8.36 -3.92 —2.25
3 12.51 11.09 9.88 8.50 6.80 -5.71 —3.38
4 12.88 1143 9.98 7.76 7.46 —5.42 -3.29
5 (high) 10.86 12.46 10.26 937 8.04 —2.82 -1.39
5-1 0.81 210 178 1.71 1.88 - -

(5-1) 0.48 117 1.01 0.90 0.84 - -
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CIV exposure captures a new source of systematic risk; paper
shows it has a significantly negative price of risk Aoy < 0.

CIV factor also helps price size-, BM-, EP-, momentum, and
aggregate volatility beta-sorted portfolios.

Traded version of the CIV factor has average return very similar
to the estimated M-y .

Paper proposes model where firm-level dividend growth has
an idiosyncratic shock component whose variance is common
across firms, the CIV factor.

Households face idiosyncratic consumption growth risk, due to
incomplete markets. Shocks to household-specific consump-
tion growth have time-varying volatility also driven by the CIV
factor.

Intuition: some idiosyncratic firm cash-flow risk is passed through
from firms to the households (e.g., via compensation contracts

or layoffs), and households require compensation to bear this
risk.

Periods of high CIV in firms’ cash flows are periods where risk
sharing is difficult, and the cross-sectional variance of individ-
ual consumption growth increases.
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¢ Evidence from individual earnings data shows comovement be-
tween dispersion in labor income growth and CIV factor.
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Fig. 6. Common idiosyncratic volatility (CIV) and dispersion in individual household income growth. The figure compares yearly changes in CIV with yearly
changes in the standard deviation and interdecile range of the individual earnings growth distribution. CIV is the equal-weighted average of firm-level
market model residual return variance each year. Individual earnings data are from the US Social Security Administration and summarized by Guvenen,
Ozkan, and Song (2014 ). Each series is standardized to have equal mean and variance for ease of comparison.
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3. Interpreting the Facts
3.1. Consumption-based asset pricing models

e Growing literature tries to understand the dynamics of volatil-
ity and option prices.

e Traditional asset pricing models with interesting variance and
variance risk premium dynamics:

- Long-run risks: Drechsler and Yaron (2011). To match the
dynamics of volatility and the variance risk premium, they
add jumps in consumption, dividends, and the variance
process.

— Variable rare disasters: Gabaix (2012) and Seo and Wachter
(20719).
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3.2. Learning-based models

e Benzoni, Collin-Dufresne, and Goldstein (2011) provide a learning-

4 11, AL U3 L

based explanation of the change in the implied volatility curve

following the 1987 stock market crash.

e Motivating figure:
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e The implied volatility curve was reasonably flat before the crash.

e But the implied volatility curve steepened and remained steep

for the next 20 years.

Pre— and post-crash implied volatilities

-——- Pre crash
Post crash

22 r

20

18 r

Implied volatility (annual percentage)
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Fig. 2. The plots depict the model-implied volatility smirk pre- and

post-1987 market crash for S&P 500 options with one month to

maturity. The model coefficients are set equal to the baseline values
given in Table 1.
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e Arrival of a rare jump triggers the updating of agents’ beliefs
about the likelihood of future jumps, which produces a market
crash, and a permanent shift in option prices.

e Similar intuition in Kozlowski, Veldkamp, and Venkateswaran

(2020) to explain the secular stagnation after the 2007-09 Great
Financial Crisis.

- An extreme event was realized that was not yet in the
econometrician’s information set.

— After observing this event, this permanently changed his
beliefs about the distribution of macro outcomes.

- Increase in tail risk. SKEW index uses out-of-the-money
S&P500 options to back out the risk-neutral probability
of a left-tail event. It increases in the GFC and remains
high.
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Figure 2: The SKEW Index.
A measure of the market price of tail risk on the SEP 500, constructed wsing option prices. Source: (-.‘Jll,l,".(:r,l.r’f(.i

Board Options Exchange (CBOE). 1990:2014.
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3.3. Intermediary-based asset pricing models

e Garleanu, Pedersen, and Poteshman (2009) develop an intermediary-
based asset pricing model for option markets.

- Imbalances in dealer inventory matter for option pricing

- They relate “demand pressure” from end users to option
puzzles such as the fact that OTM puts are expensive.

- Model is related to the Vayanos and Vila (2021) model,
which we will discuss next week in context of the term
structure of interest rates.

e Similarly, Adrian and Shin (2010) link balance sheet variables
of dealers to volatility and the variance risk premium.

e Coimbra and Rey (2019) develop a model with intermediaries
that have heterogenous Value-at-Risk constraints.

e Outline of the Garleanu1, Pedersen, and Poteshman (2009) model:

- Derivatives are indexed by i = 1, ..., I, with prices p; = (pl)cy,.
- Two groups investors:

1. “End-users” of options: Demand d; = (d!)cy,.

2. Dealers: Demand ¢; = (¢})icy,-

— Options are in zero-net supply; market clearing implies:
di+¢q =0

- Dealers are competitive and infinitely-lived, risk averse with
CARA preferences over consumption

ipvlexmm)]

v=t v

E
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— Modeling strategy: Use the dealer first-order condition to
figure out option prices given market clearing and exoge-
nous demand shocks. That is, compute prices that make
the dealer position (observed in the data later on) optimal.

- Because dealers optimize, standard no-arbitrage relation-
ships such as put-call parity hold.

- Note: If markets are complete, then demand pressure does
not matter because dealers can hedge any risk in broader
asset markets.

— Potential sources of market incompleteness:

1. Discrete-time hedging (see Bertsimas, Kogan, and Lo
(2000) for a precise analysis of the hedging error in
discrete time).

2. Jumps in the underlying.

3. Stochastic-volatility risk.

- See Pan (2002) for a model with stochastic volatility and
jumps, and an analysis of jump risk premia.

- Define the unhedgeable part of price changes as p}, ,, where
we take out the optimally-hedged stock return.

- Key result:
8pf%

L= (R — 1)Cou(B}1.Fl1).
od;

that is, the price effect for option ¢ of demand pressure
for option j depends on the covariance of the unhedgeable
parts and the risk aversion of the dealer.
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-~ Direct implication, own demand pressure is positive

op! »

8d§ = (R — 1)Vary(py1),
highlighting that price pressure is more pronounced for
options with a large unhedgeable component. Also, when
the dealer is more risk averse (e.g., when its capital posi-
tion is weak), we expect to see more demand pressure.

e Fact #1: Net demand for out-of-the-money index puts is posi-
tive.

Net demand for options by end-users

Moneyness range (K /S)

Mat. range

(cal. days) 0-0.85 0.85-0.90 0.90-0.95 0.95-1.00 1.00-1.05 1.05-1.10 1.10-1.15 1.15-2.00
Panel A: SPX option non-market-maker net demand
1-9 6,014 1,780 1,841 2,357 2,255 1,638 524 367
10-29 7,953 1,300 1,115 6,427 2,883 2,055 946 676
30-59 5,792 745 2,679 7,296 1,619 —136 1,038 1,092
60-89 2,536 1,108 2,287 2,420 1,569 —56 118 464
90-179 7,011 2,813 2,689 2,083 201 1,015 4 2,406
180-364 2,630 3,096 2,335 —1,393 386 1,125 —117 437
365-999 583 942 1,673 1,340 1,074 816 560 —1,158
All 32,519 11,785 14,621 20,530 9,987 6,457 3,074 4,286

e Fact #2: Net demand positively related to dollar expensiveness.

SPX Option Net Demand and Dollar Expensiveness (1996-2001)
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e Fact #3: Making marking is risky (top panel) and profitable
(bottom panel), about $1 mi per year per market maker. Thus,
dealers are compensated for the substantial risk they take on.

Daily Market Maker Profit/Loss
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e Fact #4: Regression evidence of demand pressure and the in-
teraction with the dealer’s P&L: effect of demand is stronger
after market-maker losses.

Index-option expensiveness explained by end-user demand with control variables

Non-market-maker demand

Constant 0.020 0.021 0.044
(2.75) (2.79) (1.61)
Demand 423 x 107 4.03 x 107 416 x 107
(4.20) (3.86) (4.44)
P&L x Demand —8.43 x 1014 —125x10°13
(—1.22) (—1.73)
Volatility —1.42 x 107!
(—0.88)
S&P Return 8.65 x 1073
(0.23)
Adj. R? (%) 31.0 31.9 34.3

The SPX excess implied volatility is regressed on non-market-maker demand as well as control variables,
1997/10-2001/12. The demand across contracts is weighted using our model with jump risk. The controls are
(1) the product between lagged monthly market-maker profit and demand, (ii) current S&P 500 volatility, and
(iii) the lagged monthly S&P 500 return. 7-statistics computed using Newey-West are in parentheses. Demand
has a positive effect on implied volatility, and the negative coefficient on the interaction between market-maker
profits and demand pressure means that the effect of demand is larger following market-maker losses.
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4. Volatility and the Real Economy

e Bloom (2009) studies the impact of “uncertainty shocks.”

Motivating figure from before
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FIGURE 1.—Monthly U.S. stock market volatility. Notes: Chicago Board of Options Exchange
VXO index of percentage implied volatility, on a hypothetical at the money S&P100 option
30 days to expiration, from 1986 onward. Pre-1986 the VXO index is unavailable, so actual
monthly returns volatilities are calculated as the monthly standard deviation of the daily S&P500
index normalized to the same mean and variance as the VXO index when they overlap from 1986
onward. Actual and VXO are correlated at 0.874 over this period. A brief description of the na-
ture and exact timing of every shock is contained in Appendix A. The asterisks indicate that for
scaling purposes the monthly VXO was capped at 50. Uncapped values for the Black Monday
peak are 58.2 and for the credit crunch peak are 64.4. LTCM is Long Term Capital Management.

e Volatility is endogenous, and Bloom (2009) uses indicator func-
tions corresponding to the peaks in the figure above.
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e Bloom [2009) estimates a VAR with monthly data from June
1962 to June 2008.

e The state vector includes

The log stock market index.

The volatility indicator.

The Federal funds rate.

The log of average hourly earnings.
The log of the consumer price index.
Hours.

The log of employment.

® N o O & L b=

The log of industrial production.
e Logic for the ordering:

- Shocks simultaneously affect asset prices and volatility
(series 1-3), then labor/goods prices (series 4-5), and then
quantities (series 6-8).

- By putting the stock market first, we already control for the
impact of the stock market when tracing out the impact of
volatility shocks.

e Instead of using the level of volatility, Bloom (2009) uses an
indicator variable to only use the exogenous nature of these
events.

e All series have been de-trended using a Hodrick-Prescott filter
(note: the standard HP filter is 2-sided).
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e Key figures
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FIGURE 2—VAR estimation of the impact of a volatility shock on industrial production. Nefes
Dashed lines are 1 standard-error bands around the response to a volatility shock.
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FIGURE 3.—VAR estimation of the impact of a volatility shock on employment. Notes: Dashed
lines are 1 standard-error bands around the response to a volatility shock.

Both production and employment fall when uncertainty in-

creases, and then bounce back, but overshoot.

Bloom (2009) develops a model to reconcile these findings.

Key innovation: Heteroscedastic aggregate demand and pro-

ductivity shocks in a firm-level model.

Intuitively, fixed costs and partial irreversibilities lead to inac-

tion regions. Higher uncertainty increases the inaction region

and firms temporarily pause their investment and hiring.

The model replicates the overshooting in the level of employ-

ment (not just hiring to catch up to trend).
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Bloom (2009) triggered a large literature trying to understand
how to measure uncertainty, what drives uncertainty, and how
it affects the real economy.

One prominent example is Jurado, Ludvigson, and Ng (2015).

Instead of using stock market volatility, they measure macro
uncertainty using a large number of macro-economic time se-
ries.

Consider N, macro series, Y; = (Y11, ..., Yn,¢)-

Define uncertainty for series j, h periods ahead, as

U]‘yt(h) = \/E [(yj,wrh — E; [%’,Hh])z};

where this definition uses the conditional expectation of y; ;.

The aggregate uncertainty measure at time ¢, h periods ahead,
is given by

Ny
U (h) = 3 wiUji(h) = By [Uf(R)]

High uncertainty means economy has become less predictable.

Measuring uncertainty requires a model for conditional expec-
tations and a stochastic volatility model for the innovations.
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e Measuring uncertainty

-~ To proxy for the information available to agents, estimate
a factor model for a large number (132) of macro-economic
time series, X,, i.e.,

Xz't = AZF/Ft + ef,f,

where dim(F) << dim(X).

- To forecast y;.;1, they use lags of y;;, the factors, and ad-
ditional variables, W;

Yiarr = U (L)yse + ) (L)Fy + ) (L)Wi + 0%, ;.

- Stack all factors together (i.e., y;, F;, and W;) and estimate
a VAR.

- Estimate a stochastic volatility model for the residuals,

e.g.,

log(o)? = o' + " log(oy_1)* + 77", m ~ N(0,1),0.i.d.
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e Macro uncertainty versus stock market uncertainty

Bloom dates > 3
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FIGURE 5. SToCK MARKET IMPLIED VOLATILITY AND UNCERTAINTY

Notes: This plot shows B;'(l) and the VXO index, expressed in standardized units. The vertical lines correspond
to the 17 dates in Bloom (2009) Table A.1, which correspond to dates when the VXO index exceeds 1.65 standard
deviations above its HP (Hodrick and Prescott 1997) filtered mean. The horizontal line corresponds to 1.65 standard
deviations above the unconditional mean of each series (which has been normalized to zero). The data are monthly
and span 1960:7-2011:12.

e Many sharp spikes in stock market volatility do not appear in
macro uncertainty. E.g., 1987 was a large spike in stock mar-
ket volatility but nothing happened macro volatility.
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¢ Re-estimate the same VAR as before, using macro uncertainty
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FIGURE 7. IMPULSE RESPONSE OF PRODUCTION AND EMPLOYMENT FROM ESTIMATION OF VAR-8 USING U (h)
OorR VXO As UNCERTAINTY

Notes: Dashed lines show 68 percent standard error bands. The data are monthly and span the period 1960:7-2011:12.

e h measures the uncertainty in months ahead (i.e, one month,
one quarter, and one year).

e Important differences:

— Macro uncertainty has larger and more persistent effects
than stock market volatility.

-~ No evidence of overshooting.

46



- Baker, Bloom, and Davis [2016) create an economic policy
uncertainty index from news stories (10 large newspapers
in the U.S.), federal tax policies that are set to expire in the
future, and Survey of Professional Forecasters’ dispersion
in forecasts about inflation and government spending.

Monthly Global Economic Policy Uncertainty Index

Zoom | lm [3m [6m | ly | 7y |All

2000 2005 2010 2015 2020

0
Z 7 202
I y

- Available for multiple countries on fthis web site.

- Used to explain stock market volatility, predict stock re-
turns, predict macro-economic aggregates.
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